Prediction Models to Estimate the Future Risk of Osteoarthritis in the General Population: A Systematic Review

被引:13
作者
Appleyard, Tom [1 ]
Thomas, Martin J. J. [1 ,2 ,3 ]
Antcliff, Deborah [1 ,4 ,5 ]
Peat, George [1 ,6 ]
机构
[1] Keele Univ, Keele, Staffs, England
[2] Midlands Partnership NHS Fdn Trust, Stafford, Staffs, England
[3] Haywood Hosp, Burslem, England
[4] Northern Care Alliance NHS Fdn Trust, Bury Care Org, Manchester, England
[5] Univ Leeds, Leeds, England
[6] Sheffield Hallam Univ, Sheffield, England
关键词
RADIOGRAPHIC KNEE OSTEOARTHRITIS; HIP; VALIDATION; ARTHROPLASTY; INDIVIDUALS; PERFORMANCE; OVERWEIGHT; BIOMARKERS; FEATURES; HAND;
D O I
10.1002/acr.25035
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
ObjectiveTo evaluate the performance and applicability of multivariable prediction models for osteoarthritis (OA). MethodsThis was a systematic review and narrative synthesis using 3 databases (EMBASE, PubMed, and Web of Science) from inception to December 2021. We included general population longitudinal studies reporting derivation, comparison, or validation of multivariable models to predict individual risk of OA incidence, defined by recognized clinical or imaging criteria. We excluded studies reporting prevalent OA and joint arthroplasty outcome. Paired reviewers independently performed article selection, data extraction, and risk-of-bias assessment. Model performance, calibration, and retained predictors were summarized. ResultsA total of 26 studies were included, reporting 31 final multivariable prediction models for incident knee (23), hip (4), hand (3) and any-site OA (1), with a median of 121.5 (range 27-12,803) outcome events, a median prediction horizon of 8 years (range 2-41), and a median of 6 predictors (range 3-24). Age, body mass index, previous injury, and occupational exposures were among the most commonly included predictors. Model discrimination after validation was generally acceptable to excellent (area under the curve = 0.70-0.85). Either internal or external validation processes were used in most models, although the risk of bias was often judged to be high with limited applicability to mass application in diverse populations. ConclusionDespite growing interest in multivariable prediction models for incident OA, focus remains predominantly on the knee, with reliance on data from a small pool of appropriate cohort data sets, and concerns over general population applicability.
引用
收藏
页码:1481 / 1493
页数:13
相关论文
共 66 条
[1]   The projected burden of primary total knee and hip replacement for osteoarthritis in Australia to the year 2030 [J].
Ackerman, Ilana N. ;
Bohensky, Megan A. ;
Zomer, Ella ;
Tacey, Mark ;
Gorelik, Alexandra ;
Brand, Caroline A. ;
de Steiger, Richard .
BMC MUSCULOSKELETAL DISORDERS, 2019, 20 (1)
[2]  
[Anonymous], 2021, MICR EXC
[3]   Development and evaluation of an osteoarthritis risk model for integration into primary care health information technology [J].
Black, Jason E. ;
Terry, Amanda L. ;
Lizotte, Daniel J. .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2020, 141
[4]   Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations [J].
Boer, Cindy G. ;
Hatzikotoulas, Konstantinos ;
Southam, Lorraine ;
Stefansdottir, Lilja ;
Zhang, Yanfei ;
de Almeida, Rodrigo Coutinho ;
Wu, Tian T. ;
Zheng, Jie ;
Hartley, April ;
Teder-Laving, Maris ;
Skogholt, Anne Heidi ;
Terao, Chikashi ;
Zengini, Eleni ;
Alexiadis, George ;
Barysenka, Andrei ;
Bjornsdottir, Gyda ;
Gabrielsen, Maiken E. ;
Gilly, Arthur ;
Ingvarsson, Thorvaldur ;
Johnsen, Marianne B. ;
Jonsson, Helgi ;
Kloppenburg, Margreet ;
Luetge, Almut ;
Lund, Sigrun H. ;
Magi, Reedik ;
Mangino, Massimo ;
Nelissen, Rob R. G. H. H. ;
Shivakumar, Manu ;
Steinberg, Julia ;
Takuwa, Hiroshi ;
Thomas, Laurent F. ;
Tuerlings, Margo ;
Babis, George C. ;
Cheung, Jason Pui Yin ;
Kang, Jae Hee ;
Kraft, Peter ;
Lietman, Steven A. ;
Samartzis, Dino ;
Slagboom, P. Eline ;
Stefansson, Kari ;
Thorsteinsdottir, Unnur ;
Tobias, Jonathan H. ;
Uitterlinden, Andre G. ;
Winsvold, Bendik ;
Zwart, John-Anker ;
Smith, George Davey ;
Sham, Pak Chung ;
Thorleifsson, Gudmar ;
Gaunt, Tom R. ;
Morris, Andrew P. .
CELL, 2021, 184 (18) :4784-+
[5]   Racial/Ethnic, Socioeconomic, and Geographic Disparities in the Epidemiology of Knee and Hip Osteoarthritis [J].
Callahan, Leigh F. ;
Cleveland, Rebecca J. ;
Allen, Kelli D. ;
Golightly, Yvonne .
RHEUMATIC DISEASE CLINICS OF NORTH AMERICA, 2021, 47 (01) :1-20
[6]   Discovery of an autoantibody signature for the early diagnosis of knee osteoarthritis: data from the Osteoarthritis Initiative [J].
Camacho-Encina, Maria ;
Balboa-Barreiro, Vanesa ;
Rego-Perez, Ignacio ;
Picchi, Florencia ;
VanDuin, Jennifer ;
Qiu, Ji ;
Fuentes, Manuel ;
Oreiro, Natividad ;
LaBaer, Joshua ;
Ruiz-Romero, Cristina ;
Blanco, Francisco J. .
ANNALS OF THE RHEUMATIC DISEASES, 2019, 78 (12) :1699-1705
[7]   The contribution of hip geometry to the prediction of hip osteoarthritis [J].
Castano-Betancourt, M. C. ;
Van Meurs, J. B. J. ;
Bierma-Zeinstra, S. ;
Rivadeneira, F. ;
Hofman, A. ;
Weinans, H. ;
Uitterlinden, A. G. ;
Waarsing, J. H. .
OSTEOARTHRITIS AND CARTILAGE, 2013, 21 (10) :1530-1536
[8]  
Chan L C, 2021, Osteoarthr Cartil Open, V3, P100135, DOI [10.1016/j.ocarto.2020.100135, 10.1016/j.ocarto.2020.100135]
[9]   Overview of clinical prediction models [J].
Chen, Lingxiao .
ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (04)
[10]  
Cochrane Methods Prognosis, 2021, TOOLS