A novel whale optimization algorithm optimized XGBoost regression for estimating bearing capacity of concrete piles

被引:45
作者
Hieu Nguyen [1 ]
Cao, Minh-Tu [2 ]
Xuan-Linh Tran [3 ,4 ]
Thu-Hien Tran [3 ,4 ]
Nhat-Duc Hoang [3 ,4 ]
机构
[1] Fulbright Univ Vietnam, Tan Phu Ward, 105 Ton Dat Tien,Dist 7, Ho Chi Minh City 105, Vietnam
[2] Natl Yang Ming Chiao Tung Univ, Dept Civil Engn, 1001 Daxue Rd, Hsinchu 300093, Taiwan
[3] Duy Tan Univ, Inst Res & Dev, P809-03 Quang Trung, Danang 550000, Vietnam
[4] Duy Tan Univ, Fac Civil Engn, P809-03 Quang Trung, Danang 550000, Vietnam
关键词
Pile bearing capacity; Machine learning; Metaheuristic; XGBoost; Whale optimization algorithm; GENETIC ALGORITHM; DRIVEN PILE; PREDICTION; MODEL; STRENGTH; LOAD;
D O I
10.1007/s00521-022-07896-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a hybrid model combining the extreme gradient boosting machine (XGBoost) and the whale optimization algorithm (WOA) to predict the bearing capacity of concrete piles. The XGBoost provides the ultimate prediction from a set of explanatory experiment variables. The WOA, which is configured to search for an optimal set of XGBoost parameters, helps increase the model's accuracy and robustness. The hybrid method is constructed by a dataset of 472 samples collected from static load tests in Vietnam. The results indicate that the hybrid model consistently outperforms the default XGBoost model and deep neural network (DNN) regression. In an experiment of 20 runs, the proposed model has gained roughly 12, 11.7, 9, and 12% reductions in root mean square error compared to the DNN with 2, 3, 4, and 5 hidden layers, respectively. The Wilcoxon signed-rank tests confirm that the proposed model is highly suitable for concrete pile capacity prediction.
引用
收藏
页码:3825 / 3852
页数:28
相关论文
共 68 条
[51]  
Rokach L., 2007, Data Mining with Decision Trees, DOI [DOI 10.1142/6604, 10.1142/6604]
[52]   Prediction of pile bearing capacity using support vector machine [J].
Samui, Pijush .
INTERNATIONAL JOURNAL OF GEOTECHNICAL ENGINEERING, 2011, 5 (01) :95-102
[53]   Neural network prediction of pullout capacity of marquee ground anchors [J].
Shahin, MA ;
Jaksa, MB .
COMPUTERS AND GEOTECHNICS, 2005, 32 (03) :153-163
[54]  
Shariatmadari N, 2008, IRAN J SCI TECHNOL B, V32, P125
[55]  
Shioi Y., 1982, Proceedings of Second European Symposium on Penetration Testing, P159
[56]  
Shooshpasha I, 2013, INT J GEOMATE, V4, P560
[57]   Traffic Incident Clearance Time Prediction and Influencing Factor Analysis Using Extreme Gradient Boosting Model [J].
Tang, Jinjun ;
Zheng, Lanlan ;
Han, Chunyang ;
Liu, Fang ;
Cai, Jianming .
JOURNAL OF ADVANCED TRANSPORTATION, 2020, 2020
[58]   Prediction of pile capacity using neural networks [J].
Teh, CI ;
Wong, KS ;
Goh, ATC ;
Jaritngam, S .
JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 1997, 11 (02) :129-138
[59]   A success history-based adaptive differential evolution optimized support vector regression for estimating plastic viscosity of fresh concrete [J].
The-Duong Nguyen ;
Thu-Hien Tran ;
Hieu Nguyen ;
Hoang Nhat-Duc .
ENGINEERING WITH COMPUTERS, 2021, 37 (02) :1485-1498
[60]   Prediction of interface yield stress and plastic viscosity of fresh concrete using a hybrid machine learning approach [J].
The-Duong Nguyen ;
Thu-Hien Tran ;
Nhat-Duc Hoang .
ADVANCED ENGINEERING INFORMATICS, 2020, 44