A novel whale optimization algorithm optimized XGBoost regression for estimating bearing capacity of concrete piles

被引:45
作者
Hieu Nguyen [1 ]
Cao, Minh-Tu [2 ]
Xuan-Linh Tran [3 ,4 ]
Thu-Hien Tran [3 ,4 ]
Nhat-Duc Hoang [3 ,4 ]
机构
[1] Fulbright Univ Vietnam, Tan Phu Ward, 105 Ton Dat Tien,Dist 7, Ho Chi Minh City 105, Vietnam
[2] Natl Yang Ming Chiao Tung Univ, Dept Civil Engn, 1001 Daxue Rd, Hsinchu 300093, Taiwan
[3] Duy Tan Univ, Inst Res & Dev, P809-03 Quang Trung, Danang 550000, Vietnam
[4] Duy Tan Univ, Fac Civil Engn, P809-03 Quang Trung, Danang 550000, Vietnam
关键词
Pile bearing capacity; Machine learning; Metaheuristic; XGBoost; Whale optimization algorithm; GENETIC ALGORITHM; DRIVEN PILE; PREDICTION; MODEL; STRENGTH; LOAD;
D O I
10.1007/s00521-022-07896-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a hybrid model combining the extreme gradient boosting machine (XGBoost) and the whale optimization algorithm (WOA) to predict the bearing capacity of concrete piles. The XGBoost provides the ultimate prediction from a set of explanatory experiment variables. The WOA, which is configured to search for an optimal set of XGBoost parameters, helps increase the model's accuracy and robustness. The hybrid method is constructed by a dataset of 472 samples collected from static load tests in Vietnam. The results indicate that the hybrid model consistently outperforms the default XGBoost model and deep neural network (DNN) regression. In an experiment of 20 runs, the proposed model has gained roughly 12, 11.7, 9, and 12% reductions in root mean square error compared to the DNN with 2, 3, 4, and 5 hidden layers, respectively. The Wilcoxon signed-rank tests confirm that the proposed model is highly suitable for concrete pile capacity prediction.
引用
收藏
页码:3825 / 3852
页数:28
相关论文
共 68 条
[1]   Regressive approach for predicting bearing capacity of bored piles from cone penetration test data [J].
Alkroosh, Iyad S. ;
Bahadori, Mohammad ;
Nikraz, Hamid ;
Bahadori, Alireza .
JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2015, 7 (05) :584-592
[2]  
Aoki N., 1975, P 5 PAN AM C SOIL ME, V1, P367
[3]   Developing a hybrid PSO-ANN model for estimating the ultimate bearing capacity of rock-socketed piles [J].
Armaghani, Danial Jahed ;
Shoib, Raja Shahrom Nizam Shah Bin Raja ;
Faizi, Koohyar ;
Rashid, Ahmad Safuan A. .
NEURAL COMPUTING & APPLICATIONS, 2017, 28 (02) :391-405
[4]   Application of artificial intelligence in geotechnical engineering: A state-of-the-art review [J].
Baghbani, Abolfazl ;
Choudhury, Tanveer ;
Costa, Susanga ;
Reiner, Johannes .
EARTH-SCIENCE REVIEWS, 2022, 228
[5]  
Bazaraa A.R., 1986, Use of in situ Tests in Geotechnical Engineering, P462
[6]  
Benali A., 2013, CIV ENV RES, V5, P118
[7]  
Bishop C.M., 2006, Pattern recognition and machine learning, DOI [10.5555/1162264, DOI 10.18637/JSS.V017.B05]
[8]  
Bouafia A, 2002, P INT WORKSH FDN DES, P369
[9]   MEASURED AND PREDICTED AXIAL RESPONSE OF 98 PILES [J].
BRIAUD, JL ;
TUCKER, LM .
JOURNAL OF GEOTECHNICAL ENGINEERING-ASCE, 1988, 114 (09) :984-1001
[10]   Simulation of humpback whale bubble-net feeding models [J].
Bryngelson, Spencer H. ;
Colonius, Tim .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2020, 147 (02) :1126-1135