Parametric study and optimization of bio-hydrogen production using steam reforming of glycerol and biodiesel fuel mixtures

被引:10
|
作者
Nemmour, Amira [1 ]
Ghenai, Chaouki [1 ,2 ]
Inayat, Abrar [1 ,2 ]
机构
[1] Univ Sharjah, Res Inst Sci & Engn, Sustainable Energy Dev Res Grp, Ctr Sustainable Energy & Power Syst, Sharjah, U Arab Emirates
[2] Univ Sharjah, Sustainable & Renewable Energy Engn Dept, Coll Engn, Sharjah, U Arab Emirates
关键词
Bio-hydrogen; Steamreforming; Glycerol; Biodiesel; Optimization; Response surface methodology; BY-PRODUCT; FAME; RSM;
D O I
10.1007/s13399-020-01230-x
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The increasing global energy demand, scarcity of fossil fuels, and climate change have encouraged the use of renewable energy sources to decrease the reliance on fossil fuels and reduce the environmental impacts. Liquid biofuels have received noticeable attention lately as renewable feedstock for hydrogen production. Since the ever-growing production of biodiesel leads to an accumulated surplus of glycerol in the world market with a low commercial value, research is focused on finding alternative methods to make use of glycerol with the aim of upgrading the biodiesel business and improving its economic feasibility. The main objective of the current study is to perform a parametric analysis and optimization of bio-hydrogen production via steam reforming of the glycerol and biodiesel mixtures. A simulation model for steam reforming of glycerol/biodiesel mixture was developed using Aspen Plus software. The simulation results were validated with experimental data. The comparison showed a good agreement between the simulation and experimental results. A parametric study was carried out to investigate the effects of the gasification temperature (500-800 degrees C), steam-to-fuel ratio (SFR) (6-12), and biodiesel-to-glycerol ratio (BGR) (0-20%) on the composition of the syngas fuel. The response surface methodology (RSM) with conjunction of central composite design (CCD) was used in this study to optimize the steam fuel reforming process. The simulation results showed that the reformer temperature was found to significantly affect hydrogen production compared to the SFR and BGR. A quadratic equation developed in this study for the hydrogen versus the three input factors (temperature, SFR, BGR) fits very well with the predicted value obtained from the simulation (R-2 = 0.99). The optimized operating conditions of the reformer for maximum bio-hydrogen production (66.06 mol%) are as follows: reformer temperature of 689.27 degrees C, SFR of 9.87, and BGR of 5.63%. This research study brings clear evidence for the research community as well as industry that bio-hydrogen can be successfully produced via steam reforming of glycerol and biodiesel mixtures.
引用
收藏
页码:8713 / 8725
页数:13
相关论文
共 50 条
  • [41] Hydrogen production by glycerol steam reforming with in situ hydrogen separation: A thermodynamic investigation
    Wang, Xiaodong
    Wang, Na
    Li, Maoshuai
    Li, Shuirong
    Wang, Shengping
    Ma, Xinbin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (19) : 10252 - 10256
  • [42] Catalysts for hydrogen production by steam reforming of bio-ethanol
    Turczyniak, Sylwia
    Machocki, Andrzej
    PRZEMYSL CHEMICZNY, 2014, 93 (11): : 1850 - 1854
  • [43] Selective production of hydrogen by steam reforming of bio-ethanol
    Banach, Bogna
    Machocki, Andrzej
    Rybak, Piotr
    Denis, Andrzej
    Grzegorczyk, Wieslaw
    Gac, Wojciech
    CATALYSIS TODAY, 2011, 176 (01) : 28 - 35
  • [44] Hydrogen production from a model bio-oil/bio-glycerol mixture through steam reforming using Zeolite L supported catalysts
    Bizkarra, K.
    Barrio, V. L.
    Gartzia-Rivero, L.
    Banuelos, J.
    Lopez-Arbeloa, I.
    Cambra, J. F.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (03) : 1492 - 1504
  • [45] Study on Bio-hydrogen Production of Different Fermentation Types
    Liu, Kun
    Jiao, An-ying
    Yue, Li-ran
    Li, Yong-feng
    NEW MATERIALS AND ADVANCED MATERIALS, PTS 1 AND 2, 2011, 152-153 : 377 - 382
  • [46] Thermodynamic analysis of steam reforming of glycerol for hydrogen production at atmospheric pressure
    Ammaru Ismaila
    Xueli Chen
    Xin Gao
    Xiaolei Fan
    Frontiers of Chemical Science and Engineering, 2021, 15 : 60 - 71
  • [47] Glycerol steam reforming for hydrogen production: Design of Ni supported catalysts
    Nichele, Valentina
    Signoretto, Michela
    Menegazzo, Federica
    Gallo, Alessandro
    Dal Santo, Vladimiro
    Cruciani, Giuseppe
    Cerrato, Giuseppina
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 111 : 225 - 232
  • [48] Nickel-based catalysts for hydrogen production by steam reforming of glycerol
    Karakoc, O. Parlar
    Kibar, M. E.
    Akin, A. N.
    Yildiz, M.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2019, 16 (09) : 5117 - 5124
  • [49] Thermodynamic analysis of steam reforming of glycerol for hydrogen production at atmospheric pressure
    Ismaila, Ammaru
    Chen, Xueli
    Gao, Xin
    Fan, Xiaolei
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2021, 15 (01) : 60 - 71
  • [50] Hydrogen production through glycerol steam reforming over the NiCexAl catalysts
    Jing, Fangli
    Liu, Shuangfei
    Wang, Rong
    Li, Xinyi
    Yan, Zhao
    Luo, Shizhong
    Chu, Wei
    RENEWABLE ENERGY, 2020, 158 : 192 - 201