Cold-tolerance mechanisms in foodborne pathogens: Escherichia coli and Listeria monocytogenes as examples

被引:0
|
作者
Liu, Ming [1 ]
Ding, Yu [2 ]
Ye, Qinghua [1 ]
Wu, Shi [1 ]
Gu, Qihui [1 ]
Chen, Ling [1 ]
Zhang, Youxiong [1 ]
Wei, Xianhu [1 ]
Deng, Meiqing [1 ]
Zhang, Jumei [1 ]
Wu, Qingping [1 ]
Wang, Juan [3 ]
机构
[1] Guangdong Acad Sci, Guangdong Prov Key Lab Microbial Safety & Hlth, State Key Lab Appl Microbiol Southern China, Inst Microbiol,Sci & Technol Innovat Platform Nutr, Guangzhou, Peoples R China
[2] Jinan Univ, Inst Food Safety & Nutr, Dept Food Sci & Engn, Guangzhou, Peoples R China
[3] South China Agr Univ, Coll Food Sci, Guangzhou, Peoples R China
关键词
Cold-chain food; Escherichia coli; Listeria monocytogenes; Yersinia enterocolitica; CRISPR/cas; BOX RNA-HELICASES; RIBOSOMAL MATURATION; LOW-TEMPERATURE; EGD-E; GROWTH; EXPRESSION; SURVIVAL; STRESS; CSPA; GENES;
D O I
10.1080/10408398.2024.2322141
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
The cold chain is an integral part of the modern food industry. Low temperatures can effectively alleviate food loss and the transmission of foodborne diseases caused by microbial reproduction. However, recent reports have highlighted shortcomings in the current cold chain technology's ability to prevent and control cold-tolerant foodborne pathogens. Furthermore, it has been observed that certain cold-chain foods have emerged as new sources of infection for foodborne disease outbreaks. Consequently, there is a pressing need to enhance control measures targeting cold-tolerant pathogens within the existing cold chain system. This paper aims to review the recent advancements in understanding the cold tolerance mechanisms of key model organisms, identify key issues in current research, and explore the potential of utilizing big data and omics technology in future studies.
引用
收藏
页码:2031 / 2045
页数:15
相关论文
共 50 条
  • [31] COLONIZATION ABILITY OF ESCHERICHIA COLI AND LISTERIA MONOCYTOGENES IN THE ENDOSPHERE OF SWEET PEPPER (CAPSICUM ANNUUM VAR. GROSSUM)
    Fusots, Z.
    Belak, A.
    Maraz, A.
    ACTA ALIMENTARIA, 2017, 46 (04) : 481 - 491
  • [32] Combined effect of sodium nitrite with high-pressure treatments on the inactivation of Escherichia coli BW25113 and Listeria monocytogenes NCTC 11994
    De Alba, M.
    Bravo, D.
    Medina, M.
    Park, S. F.
    Mackey, B. M.
    LETTERS IN APPLIED MICROBIOLOGY, 2013, 56 (02) : 155 - 160
  • [33] Comparative identification of foodborne pathogens by conventional and PCR methodology -: Listeria monocytogenes and Campylobacter jejuni as case studies
    Mozina, SS
    Zorman, T
    Jersek, B
    PROCEEDINGS OF THE 4TH CROATIAN CONGRESS OF FOOD TECHNOLOGIST, BIOTECHNOLOGISTS AND NUTRITIONISTS-CENTRAL EUROPEAN MEETING, 2002, : 412 - 417
  • [34] MIR spectroscopy as alternative method for further confirmation of foodborne pathogens Salmonella spp. and Listeria monocytogenes
    Moreirinha, Catarina
    Trindade, Joana
    Saraiva, Jorge A.
    Almeida, Adelaide
    Delgadillo, Ivonne
    JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE, 2018, 55 (10): : 3971 - 3978
  • [35] Behavior of Foodborne Pathogens Listeria monocytogenes and Staphylococcus aureus in Mixed-Species Biofilms Exposed to Biocides
    Oxaran, Virginie
    Dittmann, Karen Kiesbye
    Lee, Sarah H. I.
    Chaul, Luiza Toubas
    Fernandes de Oliveira, Carlos Augusto
    Corassin, Carlos Humberto
    Alves, Virginia Farias
    Pereira De Martinis, Elaine Cristina
    Gram, Lone
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2018, 84 (24)
  • [36] The effects of koruk products used as marination liquids against foodborne pathogens (Escherichia coli O157:H7, Listeria monocytogenes and Salmonella Typhimurium) inoculated on poultry meat
    Sengun, Ilkin Yucel
    Kilic, Gulden
    Ozturk, Berna
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2020, 133
  • [37] Spatial organisation of Listeria monocytogenes and Escherichia coli O157:H7 cultivated in gel matrices
    Saint Martin, Cedric
    Darsonval, Maud
    Gregoire, Marina
    Caccia, Nelly
    Midoux, Lucas
    Berland, Sophie
    Leroy, Sabine
    Dubois-Brissonnet, Florence
    Desvaux, Mickael
    Briandet, Romain
    FOOD MICROBIOLOGY, 2022, 103
  • [38] Artificial intelligence-based model for evaluating the inhibition of Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli in kefir matrix
    Bali, Kefyalew Chirkena
    Yildirim, Fatma Kaya
    Ulusoy, Beyza Hatice
    QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS, 2024, 16 (04) : 80 - 98
  • [39] Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce
    Ziuzina, D.
    Petil, S.
    Cullen, P. J.
    Keener, K. M.
    Bourke, P.
    FOOD MICROBIOLOGY, 2014, 42 : 109 - 116
  • [40] Colorimetric aptasensor for detecting Salmonella spp., Listeria monocytogenes, and Escherichia coli in meat samples
    Ledlod, Sudarat
    Areekit, Supatra
    Santiwatanakul, Somchai
    Chansiri, Kosum
    FOOD SCIENCE AND TECHNOLOGY INTERNATIONAL, 2020, 26 (05) : 430 - 443