A joint learning method with consistency-aware for low-resolution facial expression recognition

被引:2
|
作者
Xie, Yuanlun [1 ]
Tian, Wenhong [1 ]
Song, Liang [2 ]
Xue, Ruini [3 ]
Zha, Zhiyuan [4 ]
Wen, Bihan [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Sichuan Provinc, Peoples R China
[2] Tsinghua Univ, Sichuan Energy Internet Res Inst, Zone A,Tianfu New Econ Ind Pk, Chengdu 610213, Sichuan Provinc, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
[4] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Facial expression recognition; Image super-resolution; Deep learning; High-level vision task;
D O I
10.1016/j.eswa.2023.123022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing facial expression recognition (FER) methods are mainly devoted to learning discriminative features from high-resolution images. However, when applied to low-resolution images, their performance drops rapidly. This paper proposes a unified learning framework (namely SR-FER) by cascading the image super-resolution (SR) task and FER task to alleviate the low-resolution challenge. It effectively feeds back expression-related information from the FER network to the SR network, and returns the quality-enhanced expression images via a SR network. Specifically, a multi-stage attention-aware consistency loss module is introduced to help the SR network achieve discriminative feature restoration guided by attention information. Furthermore, a prediction consistency loss module is also developed to encourage the SR network to restore discriminative features by reducing the difference in prediction information between the restored and original normal-resolution images. Therefore, more accurate results are obtained by performing FER on the restored images. We conduct extensive experiments to demonstrate that the proposed low-resolution FER solution can help SR methods restore features favorable for FER while maintaining acceptable FER performance in various resolution degradation scenarios. The proposed method effectively improves the FER challenge under resolution degradation conditions, which is of good reference value for real-world applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Identity-aware convolutional neural networks for facial expression recognition
    Zhang, Chongsheng
    Wang, Pengyou
    Chen, Ke
    Kamarainen, Joni-Kristian
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2017, 28 (04) : 784 - 792
  • [42] Robust facial expression recognition with global-local joint representation learning
    Chunxiao Fan
    Zhenxing Wang
    Jia Li
    Shanshan Wang
    Xiao Sun
    Multimedia Systems, 2023, 29 : 3069 - 3079
  • [43] Enhancing Noisy Label Facial Expression Recognition With Split and Merge Consistency Regularization
    Kim, Jihyun
    Kwon, Junehyoung
    Kim, Mihyeon
    Lee, Eunju
    Kim, Youngbin
    IEEE ACCESS, 2023, 11 : 140496 - 140505
  • [44] Heterogeneous Dual-Branch Emotional Consistency Network for Facial Expression Recognition
    Mao, Shasha
    Zhang, Yuanyuan
    Yan, Dandan
    Chen, Puhua
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 566 - 570
  • [45] Joint prominent expression feature regions in auxiliary task learning network for facial expression recognition
    Chen, Wendong
    Hu, Haifeng
    ELECTRONICS LETTERS, 2019, 55 (01) : 22 - 23
  • [46] Complexity aware center loss for facial expression recognition
    Li, Huihui
    Yuan, Xu
    Xu, Chunlin
    Zhang, Rui
    Liu, Xiaoyong
    Liu, Lianqi
    VISUAL COMPUTER, 2024, 40 (11) : 8045 - 8054
  • [47] Automatic Facial Expression Recognition Using Deep Learning
    Prasad, M. S. Guru
    Prithviraj
    Choudhury, Tanupriya
    Kotecha, Ketan
    Jain, Deepak
    Yeole, Ashwini N.
    INTELLIGENT AND FUZZY SYSTEMS, INFUS 2024 CONFERENCE, VOL 1, 2024, 1088 : 414 - 426
  • [48] Dynamic region features learning for facial expression recognition
    Yuanlun Xie
    Wenhao Wang
    Yibo Zhang
    Kaibo Shi
    Hengxin Zhang
    Nan Zhou
    Signal, Image and Video Processing, 2025, 19 (6)
  • [49] Multi-scale patch based representation feature learning for low-resolution face recognition
    Gao, Guangwei
    Yu, Yi
    Yang, Meng
    Huang, Pu
    Ge, Qi
    Yue, Dong
    APPLIED SOFT COMPUTING, 2020, 90
  • [50] A Navel Facial Expression Recognition Method Based on Extreme Learning Machine
    Liu, Zhen-Tao
    Sui, Gui-Tian
    Li, Dan-Yun
    Tan, Guan-Zheng
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 3852 - 3857