A joint learning method with consistency-aware for low-resolution facial expression recognition

被引:2
|
作者
Xie, Yuanlun [1 ]
Tian, Wenhong [1 ]
Song, Liang [2 ]
Xue, Ruini [3 ]
Zha, Zhiyuan [4 ]
Wen, Bihan [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Sichuan Provinc, Peoples R China
[2] Tsinghua Univ, Sichuan Energy Internet Res Inst, Zone A,Tianfu New Econ Ind Pk, Chengdu 610213, Sichuan Provinc, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
[4] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Facial expression recognition; Image super-resolution; Deep learning; High-level vision task;
D O I
10.1016/j.eswa.2023.123022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing facial expression recognition (FER) methods are mainly devoted to learning discriminative features from high-resolution images. However, when applied to low-resolution images, their performance drops rapidly. This paper proposes a unified learning framework (namely SR-FER) by cascading the image super-resolution (SR) task and FER task to alleviate the low-resolution challenge. It effectively feeds back expression-related information from the FER network to the SR network, and returns the quality-enhanced expression images via a SR network. Specifically, a multi-stage attention-aware consistency loss module is introduced to help the SR network achieve discriminative feature restoration guided by attention information. Furthermore, a prediction consistency loss module is also developed to encourage the SR network to restore discriminative features by reducing the difference in prediction information between the restored and original normal-resolution images. Therefore, more accurate results are obtained by performing FER on the restored images. We conduct extensive experiments to demonstrate that the proposed low-resolution FER solution can help SR methods restore features favorable for FER while maintaining acceptable FER performance in various resolution degradation scenarios. The proposed method effectively improves the FER challenge under resolution degradation conditions, which is of good reference value for real-world applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Facial expression recognition based on deep learning
    Ge, Huilin
    Zhu, Zhiyu
    Dai, Yuewei
    Wang, Biao
    Wu, Xuedong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 215
  • [32] Facial Expression Recognition via Deep Learning
    Zhao, Xiaoming
    Shi, Xugan
    Zhang, Shiqing
    IETE TECHNICAL REVIEW, 2015, 32 (05) : 347 - 355
  • [33] Identity-Aware Facial Expression Recognition Via Deep Metric Learning Based on Synthesized Images
    Huang, Wei
    Zhang, Siyuan
    Zhang, Peng
    Zha, Yufei
    Fang, Yuming
    Zhang, Yanning
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 24 : 3327 - 3339
  • [34] Recognition of low-resolution objects in remote sensing images
    Knyaz, Vladimir
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [35] Fish Recognition from Low-resolution Underwater Images
    Sun, Xin
    Shi, Junyu
    Dong, Junyu
    Wang, Xinhua
    2016 9TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2016), 2016, : 471 - 476
  • [36] Low-resolution Iris Recognition via Knowledge Transfer
    Boutros, Fadi
    Kaehm, Olga
    Fang, Meiling
    Kirchbuchner, Florian
    Damer, Naser
    Kuijper, Arjan
    PROCEEDINGS OF THE 21ST 2022 INTERNATIONAL CONFERENCE OF THE BIOMETRICS SPECIAL INTEREST GROUP (BIOSIG 2022), 2022, P-329
  • [37] GRADIENT IMAGE SUPER-RESOLUTION FOR LOW-RESOLUTION IMAGE RECOGNITION
    Noor, Dewan Fahim
    Li, Yue
    Li, Zhu
    Bhattacharyya, Shuvra
    York, George
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 2332 - 2336
  • [38] Robust facial expression recognition with global-local joint representation learning
    Fan, Chunxiao
    Wang, Zhenxing
    Li, Jia
    Wang, Shanshan
    Sun, Xiao
    MULTIMEDIA SYSTEMS, 2023, 29 (05) : 3069 - 3079
  • [39] Identity-aware convolutional neural networks for facial expression recognition
    Chongsheng Zhang
    Pengyou Wang
    Ke Chen
    Joni-Kristian Kmrinen
    Journal of Systems Engineering and Electronics, 2017, 28 (04) : 784 - 792
  • [40] UA-FER: Uncertainty-aware representation learning for facial expression recognition
    Zhou, Haoliang
    Huang, Shucheng
    Xu, Yuqiao
    NEUROCOMPUTING, 2025, 621