A joint learning method with consistency-aware for low-resolution facial expression recognition

被引:2
|
作者
Xie, Yuanlun [1 ]
Tian, Wenhong [1 ]
Song, Liang [2 ]
Xue, Ruini [3 ]
Zha, Zhiyuan [4 ]
Wen, Bihan [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Sichuan Provinc, Peoples R China
[2] Tsinghua Univ, Sichuan Energy Internet Res Inst, Zone A,Tianfu New Econ Ind Pk, Chengdu 610213, Sichuan Provinc, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
[4] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Facial expression recognition; Image super-resolution; Deep learning; High-level vision task;
D O I
10.1016/j.eswa.2023.123022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing facial expression recognition (FER) methods are mainly devoted to learning discriminative features from high-resolution images. However, when applied to low-resolution images, their performance drops rapidly. This paper proposes a unified learning framework (namely SR-FER) by cascading the image super-resolution (SR) task and FER task to alleviate the low-resolution challenge. It effectively feeds back expression-related information from the FER network to the SR network, and returns the quality-enhanced expression images via a SR network. Specifically, a multi-stage attention-aware consistency loss module is introduced to help the SR network achieve discriminative feature restoration guided by attention information. Furthermore, a prediction consistency loss module is also developed to encourage the SR network to restore discriminative features by reducing the difference in prediction information between the restored and original normal-resolution images. Therefore, more accurate results are obtained by performing FER on the restored images. We conduct extensive experiments to demonstrate that the proposed low-resolution FER solution can help SR methods restore features favorable for FER while maintaining acceptable FER performance in various resolution degradation scenarios. The proposed method effectively improves the FER challenge under resolution degradation conditions, which is of good reference value for real-world applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Occlusion-aware facial expression recognition: A deep learning approach
    Palanichamy Naveen
    Multimedia Tools and Applications, 2024, 83 : 32895 - 32921
  • [22] Occlusion-aware facial expression recognition: A deep learning approach
    Naveen, Palanichamy
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (11) : 32895 - 32921
  • [23] Learning sparse discriminant low-rank features for low-resolution face recognition
    Shakeel, M. Saad
    Lam, Kin-Man
    Lai, Shun-Cheung
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 63
  • [24] Identity-Aware Facial Expression Recognition Method Based on Synthesized Images and Deep Metric Learning
    Zhang S.
    Xiao S.
    Zhang P.
    Huang W.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2021, 33 (05): : 724 - 732
  • [25] A Continuous Facial Expression Recognition Model based on Deep Learning Method
    Lin, Szu-Yin
    Tseng, Yi-Wen
    Wu, Chang-Rong
    Kung, Yun-Ching
    Chen, Yi-Zhen
    Wu, Chao-Ming
    2019 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS), 2019,
  • [26] Hybrid Attention-Aware Learning Network for Facial Expression Recognition in the Wild
    Gong, Weijun
    La, Zhiyao
    Qian, Yurong
    Zhou, Weihang
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (09) : 12203 - 12217
  • [27] TFE: A Transformer Architecture for Occlusion Aware Facial Expression Recognition
    Gao, Jixun
    Zhao, Yuanyuan
    FRONTIERS IN NEUROROBOTICS, 2021, 15
  • [28] Attention-aware perceptual enhancement nets for low-resolution image classification
    Zhu, Xiaobin
    Li, Zhuangzi
    Li, Xianbo
    Li, Shanshan
    Dai, Feng
    INFORMATION SCIENCES, 2020, 515 : 233 - 247
  • [29] Deep Learning Models for Facial Expression Recognition
    Sajjanhar, Atul
    Wu, ZhaoQi
    Wen, Quan
    2018 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2018, : 583 - 588
  • [30] Facial Expression Recognition using Transfer Learning
    Ramalingam, Soodamani
    Garzia, Fabio
    2018 52ND ANNUAL IEEE INTERNATIONAL CARNAHAN CONFERENCE ON SECURITY TECHNOLOGY (ICCST), 2018, : 152 - 156