Landau damping on the torus for the Vlasov-Poisson system with massless electrons

被引:3
作者
Gagnebin, Antoine [1 ]
Iacobelli, Mikaela [1 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
关键词
GLOBAL CLASSICAL-SOLUTIONS; QUASI-NEUTRAL LIMIT; WEAK SOLUTIONS; PROPAGATION; REGULARITY; EXISTENCE; EQUATION; MOMENTS;
D O I
10.1016/j.jde.2023.08.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the nonlinear Landau damping on the torus Td for the Vlasov-Poisson system with massless electrons (VPME). We consider solutions with analytic or Gevrey (gamma > 1/3) initial data, close to a homogeneous equilibrium satisfying a Penrose stability condition. We show that for such solutions, the corresponding density and force field decay exponentially fast as time goes to infinity. This work extends the results for Vlasov-Poisson on the torus to the case of ions and, more generally, to arbitrary analytic nonlinear couplings.(c) 2023 The Authors. Published by Elsevier Inc.
引用
收藏
页码:154 / 203
页数:50
相关论文
共 50 条
[1]  
Arsen'ev A. A., 1975, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, V15, P136
[2]  
BARDOS C, 1985, ANN I H POINCARE-AN, V2, P101
[3]  
Bardos C., 1986, Nonlinear systems ofpartial differential equations in applied mathematics, V23, P189
[4]  
Bardos C., 1985, NONLINEAR PARTIAL DI, V122, P35
[5]   The Maxwell-Boltzmann approximation for ion kinetic modeling [J].
Bardos, Claude ;
Golse, Francois ;
Nguyen, Toan T. ;
Sentis, Remi .
PHYSICA D-NONLINEAR PHENOMENA, 2018, 376 :94-107
[6]  
BATT J, 1991, CR ACAD SCI I-MATH, V313, P411
[7]  
Bedrossian J., 2016, Ann. PDE, V2, P4
[8]  
Bedrossian J., 2017, Annals of PDE, V3, P1, DOI [10.1007/s40818-017-0036-6, DOI 10.1007/S40818-017-0036-6]
[9]   LINEARIZED WAVE-DAMPING STRUCTURE OF VLASOV-POISSON IN R3 [J].
Bedrossian, Jacob ;
Masmoudi, Nader ;
Mouhot, Clement .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (04) :4379-4406
[10]   Nonlinear echoes and Landau damping with insufficient regularity [J].
Bedrossian, Jacob .
TUNISIAN JOURNAL OF MATHEMATICS, 2021, 3 (01) :121-+