The Ablation of Sensory Neurons Expressing the Nav1.8 Sodium Channel Improves Glucose Homeostasis and Amplifies the GLP-1 Signaling in Obese Female Mice

被引:1
作者
Romani-Perez, Marina [1 ]
Bullich-Vilarrubias, Clara [1 ]
Lopez-Almela, Inmaculada [1 ]
Sanz, Yolanda [1 ]
机构
[1] Spanish Natl Res Council IATA CSIC, Inst Agrochem & Food Technol, Valencia, Spain
基金
欧盟地平线“2020”;
关键词
glucagon like peptide-1 (GLP-1); Nav1.8+sensory neurons; obesity; type; 2; diabetes; GLUCAGON-LIKE PEPTIDE-1; CARDIOVASCULAR RISK; INSULIN-RESISTANCE; MOTILITY; GUT; SECRETION; REVEALS; SYSTEM; VBLOC; CELL;
D O I
10.1002/mnfr.202300474
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
ScopeSensory neurons expressing the sodium channel Nav1.8 contain a repertoire of receptors for nutrient, hormonal, and inflammatory ligands. However, their function in key regulators of energy homeostasis control is not well understood and is completely unexplored in females.Methods and resultsMice lacking neurons expressing the sodium channel Nav1.8 were generated using an ablation strategy based on cre recombinase-mediated expression of diphtheria toxin fragment A (DTA) (Nav1.8-cre/DTA mice) to investigate whether these neurons modulate body weight, food intake, gut hormone secretion, gastrointestinal transit, and glucose tolerance in response to nutrient challenges in a sex-dependent manner. Male Nav1.8-cre/DTA mice show resistance to gain weight in response to high-fat high-sugar diet (HFHSD), whereas females lacking Nav1.8+ neurons have improved oral glucose tolerance accompanied by higher insulin levels and attenuated glucagon secretion after an oral glucose load. Female Nav1.8-cre/DTA mice also show higher fasting and postprandial glucagon like peptide-1 (GLP-1) levels with an increased number of GLP-1-positive cells. Finally, ablation of Nav1.8-expressing neurons accelerates the gastrointestinal transit in female mice under HFHSD.ConclusionThis data demonstrates sex-dependent differences in the Nav1.8-mediated regulation of energy metabolism, and provides new insights that may help in the design of sex-specific neuromodulation therapies for metabolic disorders induced by diets rich in fats and simple sugars. The ablation of Nav1.8-expressing neurons displays sex-dependent metabolic effects. Intestinal adaptations resulting from the absence of these neurons amplify GLP-1 and insulin secretion in females and minimize postprandial triglyceride uptake in male mice. Therefore, in response to an obesogenic diet, loss of these neurons improves oral glucose tolerance in females, while induces resistance to gain weight in males.image
引用
收藏
页数:13
相关论文
共 52 条
  • [1] The cell and molecular basis of mechanical, cold, and inflammatory pain
    Abrahamsen, Bjarke
    Zhao, Jing
    Asante, Curtis O.
    Cendan, Cruz Miguel
    Marsh, Steve
    Martinez-Barbera, Juan Pedro
    Nassar, Mohammed A.
    Dickenson, Anthony H.
    Wood, John N.
    [J]. SCIENCE, 2008, 321 (5889) : 702 - 705
  • [2] Peripheral motor action of glucagon-like peptide-1 through enteric neuronal receptors
    Amato, A.
    Cinci, L.
    Rotondo, A.
    Serio, R.
    Faussone-Pellegrini, M. S.
    Vannucchi, M. G.
    Mule, F.
    [J]. NEUROGASTROENTEROLOGY AND MOTILITY, 2010, 22 (06) : 664 - +
  • [3] Two-Year Outcomes of Vagal Nerve Blocking (vBloc) for the Treatment of Obesity in the ReCharge Trial
    Apovian, Caroline M.
    Shah, Sajani N.
    Wolfe, Bruce M.
    Ikramuddin, Sayeed
    Miller, Christopher J.
    Tweden, Katherine S.
    Billington, Charles J.
    Shikora, Scott A.
    [J]. OBESITY SURGERY, 2017, 27 (01) : 169 - 176
  • [4] An afferent vagal nerve pathway links hepatic PPARα activation to glucocorticoid-induced insulin resistance and hypertension
    Bernal-Mizrachi, Carlos
    Liu Xiaozhong
    Li Yin
    Knutsen, Russell H.
    Howard, Michael J.
    Arends, Joop J. A.
    DeSantis, Pascual
    Coleman, Trey
    Semenkovich, Clay F.
    [J]. CELL METABOLISM, 2007, 5 (02) : 91 - 102
  • [5] Knockout of TSC2 in Nav1.8+neurons predisposes to the onset of normal weight obesity
    Brazill, Jennifer M.
    Shin, David
    Magee, Kristann
    Majumdar, Anurag
    Shen, Ivana R.
    Cavalli, Valeria
    Scheller, Erica L.
    [J]. MOLECULAR METABOLISM, 2023, 68
  • [6] Central Nervous System Control of Gastrointestinal Motility and Secretion and Modulation of Gastrointestinal Functions
    Browning, Kirsteen N.
    Travagli, R. Alberto
    [J]. COMPREHENSIVE PHYSIOLOGY, 2014, 4 (04) : 1339 - 1368
  • [7] Peripheral Mechanisms in Appetite Regulation
    Camilleri, Michael
    [J]. GASTROENTEROLOGY, 2015, 148 (06) : 1219 - 1233
  • [8] The metabolic response to a high-fat diet reveals obesity-prone and -resistant phenotypes in mice with distinct mRNA-seq transcriptome profiles
    Choi, J-Y
    McGregor, R. A.
    Kwon, E-Y
    Kim, Y. J.
    Han, Y.
    Park, J. H. Y.
    Lee, K. W.
    Kim, S-J
    Kim, J.
    Yun, J. W.
    Choi, M-S
    [J]. INTERNATIONAL JOURNAL OF OBESITY, 2016, 40 (09) : 1452 - 1460
  • [9] Gut-Brain Cross-Talk in Metabolic Control
    Clemmensen, Christoffer
    Mueller, Timo D.
    Woods, Stephen C.
    Berthoud, Hans-Rudolf
    Seeley, Randy J.
    Tschoep, Matthias H.
    [J]. CELL, 2017, 168 (05) : 758 - 774
  • [10] The role of enteric inhibitory neurons in intestinal motility
    Costa, Marcello
    Spencer, Nick J.
    Brookes, Simon J. H.
    [J]. AUTONOMIC NEUROSCIENCE-BASIC & CLINICAL, 2021, 235