RdRp activity test using CRISPR/Cas13a enzyme (RACE) for screening of SARS-CoV-2 inhibitors

被引:1
作者
Yi, Soyeon [1 ]
Guk, Kyeonghye [1 ]
Kim, Hyeran [1 ]
Lee, Kyu-Sun [1 ,2 ]
Lim, Eun-Kyung [1 ,2 ,3 ]
Kang, Taejoon [1 ,2 ]
Jung, Juyeon [1 ,2 ,3 ]
机构
[1] Korea Res Inst Biosci & Biotechnol KRIBB, Bionanotechnol Res Ctr, 125 Gwahak Ro, Daejeon 34141, South Korea
[2] Sungkyunkwan Univ SKKU, Sch Pharm, 2066 Seobu Ro, Suwon 16419, South Korea
[3] Univ Sci & Technol UST, KRIBB Sch Biotechnol, Dept Nanobiotechnol, 217 Gajeong Ro, Daejeon 34113, South Korea
关键词
COVID-19; SARS-CoV-2; RNA-dependent RNA polymerase activity; Antiviral drug screening; CRISPR/Cas; COVID-19;
D O I
10.1016/j.snb.2023.134748
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The coronavirus disease 2019 pandemic has highlighted the need for efficient antiviral drug screening tech-nologies, particularly for targeting RNA-dependent RNA polymerase (RdRp). Here, we present a novel RdRp activity assay using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 13a (Cas13a) enzyme (RACE) for screening of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibitors. This is the first application of the CRISPR/Cas complex for RdRp activity-based drug screening. The RACE system combines RdRp, RNA template, target inhibitor, CRISPR/Cas13a, and reporter probe, enabling accurate detection of the inhibitory effect on RdRp activity. This is demonstrated by the system's ability to provide half-maximal inhibitory concentration values of 7.5 +/- 0.5 and 8.9 +/- 0.6 mu M for remdesivir triphosphate and C646, respectively. In addition, the RACE system requires a detection time of 5 min, making it more efficient than traditional endpoint assays. The real-time fluorometric output of the RACE system allows monitoring of reactions, providing insight into the kinetics of RdRp activity. Furthermore, the versatility of the RACE system extends to lateral flow assay formats, improving convenience. We anticipate that the RACE system has the potential to identify antiviral compounds that target RdRp, thereby accelerating the development of effective antiviral therapies.
引用
收藏
页数:8
相关论文
共 40 条
[1]   Identifying Small-Molecule Inhibitors of SARS-CoV-2 RNA-Dependent RNA Polymerase by Establishing a Fluorometric Assay [J].
Bai, Xiaoming ;
Sun, Hongmin ;
Wu, Shuo ;
Li, Yuhuan ;
Wang, Lifei ;
Hong, Bin .
FRONTIERS IN IMMUNOLOGY, 2022, 13
[2]   Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp12/7/8 RNA-dependent RNA polymerase [J].
Bertolin, Agustina P. ;
Weissmann, Florian ;
Zeng, Jingkun ;
Posse, Viktor ;
Milligan, Jennifer C. ;
Canal, Berta ;
Ulferts, Rachel ;
Wu, Mary ;
Drury, Lucy S. ;
Howell, Michael ;
Beale, Rupert ;
Diffley, John F. X. .
BIOCHEMICAL JOURNAL, 2021, 478 (01) :2425-2443
[3]   Opportunities and Challenges in Targeting the Proofreading Activity of SARS-CoV-2 Polymerase Complex [J].
Deval, Jerome ;
Gurard-Levin, Zachary A. .
MOLECULES, 2022, 27 (09)
[4]   SARS-CoV-2 jumping the species barrier: Zoonotic lessons from SARS, MERS and recent advances to combat this pandemic virus [J].
Dhama, Kuldeep ;
Patel, Shailesh Kumar ;
Sharun, Khan ;
Pathak, Mamta ;
Tiwari, Ruchi ;
Yatoo, Mohd Iqbal ;
Malik, Yashpal Singh ;
Sah, Ranjit ;
Rabaan, Ali A. ;
Panwar, Parmod Kumar ;
Singh, Karam Pal ;
Michalak, Izabela ;
Chaicumpa, Wanpen ;
Martinez-Pulgarin, Dayron F. ;
Bonilla-Aldana, D. Katterine ;
Rodriguez-Morales, Alfonso J. .
TRAVEL MEDICINE AND INFECTIOUS DISEASE, 2020, 37
[5]   A fluorescence-based high throughput-screening assay for the SARS-CoV RNA synthesis complex [J].
Eydoux, Cecilia ;
Fattorini, Veronique ;
Shannon, Ashleigh ;
Thi-Tuyet-Nhung Le ;
Didier, Bruno ;
Canard, Bruno ;
Guillemot, Jean-Claude .
JOURNAL OF VIROLOGICAL METHODS, 2021, 288
[6]   Structure of the RNA-dependent RNA polymerase from COVID-19 virus [J].
Gao, Yan ;
Yan, Liming ;
Huang, Yucen ;
Liu, Fengjiang ;
Zhao, Yao ;
Cao, Lin ;
Wang, Tao ;
Sun, Qianqian ;
Ming, Zhenhua ;
Zhang, Lianqi ;
Ge, Ji ;
Zheng, Litao ;
Zhang, Ying ;
Wang, Haofeng ;
Zhu, Yan ;
Zhu, Chen ;
Hu, Tianyu ;
Hua, Tian ;
Zhang, Bing ;
Yang, Xiuna ;
Li, Jun ;
Yang, Haitao ;
Liu, Zhijie ;
Xu, Wenqing ;
Guddat, Luke W. ;
Wang, Quan ;
Lou, Zhiyong ;
Rao, Zihe .
SCIENCE, 2020, 368 (6492) :779-+
[7]   Hybrid CRISPR/Cas protein for one-pot detection of DNA and RNA [J].
Guk, Kyeonghye ;
Yi, Soyeon ;
Kim, Hyeran ;
Bae, Yoonji ;
Yong, Dongeun ;
Kim, Sunjoo ;
Lee, Kyu-Sun ;
Lim, Eun-Kyung ;
Kang, Taejoon ;
Jung, Juyeon .
BIOSENSORS & BIOELECTRONICS, 2023, 219
[8]   Health systems resilience in managing the COVID-19 pandemic: lessons from 28 countries [J].
Haldane, Victoria ;
De Foo, Chuan ;
Abdalla, Salma M. ;
Jung, Anne-Sophie ;
Tan, Melisa ;
Wu, Shishi ;
Chua, Alvin ;
Verma, Monica ;
Shrestha, Pami ;
Singh, Sudhvir ;
Perez, Tristana ;
Tan, See Mieng ;
Bartos, Michael ;
Mabuchi, Shunsuke ;
Bonk, Mathias ;
McNab, Christine ;
Werner, George K. ;
Panjabi, Raj ;
Nordstrom, Anders ;
Legido-Quigley, Helena .
NATURE MEDICINE, 2021, 27 (06) :964-980
[9]   Current Advances in Paper-Based Biosensor Technologies for Rapid COVID-19 Diagnosis [J].
Kim, Soohyun ;
Lee, Jong-Hwan .
BIOCHIP JOURNAL, 2022, 16 (04) :376-396
[10]   Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors [J].
Kirchdoerfer, Robert N. ;
Ward, Andrew B. .
NATURE COMMUNICATIONS, 2019, 10 (1)