Long-time convergence of a nonlocal Burgers' equation towards the local N-wave

被引:3
作者
Coclite, Giuseppe Maria [1 ]
De Nitti, Nicola [2 ]
Keimer, Alexander [3 ]
Pflug, Lukas [3 ,4 ]
Zuazua, Enrique [2 ,5 ,6 ]
机构
[1] Polytech Univ Bari, Dept Mech Math & Management, Via E Orabona 4, I-70125 Bari, Italy
[2] Friedrich Alexander Univ Erlangen Nurnberg, Chair Dynam Control Machine Learning & Numer, Dept Math, Alexander Humboldt Professorship, Cauerstr 11, D-91058 Erlangen, Germany
[3] Friedrich Alexander Univ Erlangen Nurnberg, Chair Appl Math Continuous Optimizat, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[4] Friedrich Alexander Univ Erlangen Nurnberg, Cent Inst Sci Comp, Martensstr 5a, D-91058 Erlangen, Germany
[5] Fdn Deusto, Chair Computat Math, Ave Univ 24, Bilbao 48007, Basque Country, Spain
[6] Univ Autonoma Madrid, Dept Matemat, Ciudad Univ Cantoblanco, Madrid 28049, Spain
关键词
nonlocal conservation laws; nonlocal flux; Burgers equation; approximation of local conservation laws; N-waves; source-type solutions; entropy solutions; CONVECTION-DIFFUSION EQUATION; ASYMPTOTIC-BEHAVIOR; TRANSPORT-EQUATIONS; CONSERVATION-LAWS; WELL-POSEDNESS; UNIQUENESS; DECAY; LIMIT; MODEL;
D O I
10.1088/1361-6544/acf01d
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long-time behaviour of the unique weak solution of a nonlocal regularisation of the (inviscid) Burgers equation where the velocity is approximated by a one-sided convolution with an exponential kernel. The initial datum is assumed to be positive, bounded, and integrable. The asymptotic profile is given by the 'N-wave' entropy solution of the Burgers equation. The key ingredients of the proof are a suitable scaling argument and a nonlocal Oleinik-type estimate.
引用
收藏
页码:5998 / 6019
页数:22
相关论文
共 41 条
[41]  
Tartar L., 2007, An Introduction to Sobolev Spaces and Interpolation Spaces, V3