Long-time convergence of a nonlocal Burgers' equation towards the local N-wave

被引:1
作者
Coclite, Giuseppe Maria [1 ]
De Nitti, Nicola [2 ]
Keimer, Alexander [3 ]
Pflug, Lukas [3 ,4 ]
Zuazua, Enrique [2 ,5 ,6 ]
机构
[1] Polytech Univ Bari, Dept Mech Math & Management, Via E Orabona 4, I-70125 Bari, Italy
[2] Friedrich Alexander Univ Erlangen Nurnberg, Chair Dynam Control Machine Learning & Numer, Dept Math, Alexander Humboldt Professorship, Cauerstr 11, D-91058 Erlangen, Germany
[3] Friedrich Alexander Univ Erlangen Nurnberg, Chair Appl Math Continuous Optimizat, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[4] Friedrich Alexander Univ Erlangen Nurnberg, Cent Inst Sci Comp, Martensstr 5a, D-91058 Erlangen, Germany
[5] Fdn Deusto, Chair Computat Math, Ave Univ 24, Bilbao 48007, Basque Country, Spain
[6] Univ Autonoma Madrid, Dept Matemat, Ciudad Univ Cantoblanco, Madrid 28049, Spain
关键词
nonlocal conservation laws; nonlocal flux; Burgers equation; approximation of local conservation laws; N-waves; source-type solutions; entropy solutions; CONVECTION-DIFFUSION EQUATION; ASYMPTOTIC-BEHAVIOR; TRANSPORT-EQUATIONS; CONSERVATION-LAWS; WELL-POSEDNESS; UNIQUENESS; DECAY; LIMIT; MODEL;
D O I
10.1088/1361-6544/acf01d
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long-time behaviour of the unique weak solution of a nonlocal regularisation of the (inviscid) Burgers equation where the velocity is approximated by a one-sided convolution with an exponential kernel. The initial datum is assumed to be positive, bounded, and integrable. The asymptotic profile is given by the 'N-wave' entropy solution of the Burgers equation. The key ingredients of the proof are a suitable scaling argument and a nonlocal Oleinik-type estimate.
引用
收藏
页码:5998 / 6019
页数:22
相关论文
共 41 条
  • [1] Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
  • [2] ON THE NUMERICAL INTEGRATION OF SCALAR NONLOCAL CONSERVATION LAWS
    Amorim, Paulo
    Colombo, Rinaldo M.
    Teixeira, Andreia
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01): : 19 - 37
  • [3] Critical nonlinearity exponent and self-similar asymptotics for Levy conservation laws
    Biler, P
    Karch, G
    Woyczynski, WA
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (05): : 613 - 637
  • [4] Bogachev V. I., 2007, Measure Theory, V1, DOI DOI 10.1371/journal.pgen.1000083
  • [5] Bouchut F, 2005, ANN SCUOLA NORM-SCI, V4, P1
  • [6] ONE-DIMENSIONAL TRANSPORT EQUATIONS WITH DISCONTINUOUS COEFFICIENTS
    Bouchut, F.
    James, F.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (07) : 891 - 933
  • [7] Bressan A, 2021, COMMUN MATH SCI, V19, P1447
  • [8] On Traffic Flow with Nonlocal Flux: A Relaxation Representation
    Bressan, Alberto
    Shen, Wen
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 237 (03) : 1213 - 1236
  • [9] Decay of entropy solutions of nonlinear conservation laws
    Chen, GQ
    Frid, H
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 146 (02) : 95 - 127
  • [10] Coclite G.M., 2023, Ann. Inst. H. Poincar C Anal. Non Linaire, P1205