Long-time convergence of a nonlocal Burgers' equation towards the local N-wave

被引:2
作者
Coclite, Giuseppe Maria [1 ]
De Nitti, Nicola [2 ]
Keimer, Alexander [3 ]
Pflug, Lukas [3 ,4 ]
Zuazua, Enrique [2 ,5 ,6 ]
机构
[1] Polytech Univ Bari, Dept Mech Math & Management, Via E Orabona 4, I-70125 Bari, Italy
[2] Friedrich Alexander Univ Erlangen Nurnberg, Chair Dynam Control Machine Learning & Numer, Dept Math, Alexander Humboldt Professorship, Cauerstr 11, D-91058 Erlangen, Germany
[3] Friedrich Alexander Univ Erlangen Nurnberg, Chair Appl Math Continuous Optimizat, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[4] Friedrich Alexander Univ Erlangen Nurnberg, Cent Inst Sci Comp, Martensstr 5a, D-91058 Erlangen, Germany
[5] Fdn Deusto, Chair Computat Math, Ave Univ 24, Bilbao 48007, Basque Country, Spain
[6] Univ Autonoma Madrid, Dept Matemat, Ciudad Univ Cantoblanco, Madrid 28049, Spain
关键词
nonlocal conservation laws; nonlocal flux; Burgers equation; approximation of local conservation laws; N-waves; source-type solutions; entropy solutions; CONVECTION-DIFFUSION EQUATION; ASYMPTOTIC-BEHAVIOR; TRANSPORT-EQUATIONS; CONSERVATION-LAWS; WELL-POSEDNESS; UNIQUENESS; DECAY; LIMIT; MODEL;
D O I
10.1088/1361-6544/acf01d
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long-time behaviour of the unique weak solution of a nonlocal regularisation of the (inviscid) Burgers equation where the velocity is approximated by a one-sided convolution with an exponential kernel. The initial datum is assumed to be positive, bounded, and integrable. The asymptotic profile is given by the 'N-wave' entropy solution of the Burgers equation. The key ingredients of the proof are a suitable scaling argument and a nonlocal Oleinik-type estimate.
引用
收藏
页码:5998 / 6019
页数:22
相关论文
共 41 条
[1]  
Ambrosio L., 2000, OX MATH M, pxviii
[2]   ON THE NUMERICAL INTEGRATION OF SCALAR NONLOCAL CONSERVATION LAWS [J].
Amorim, Paulo ;
Colombo, Rinaldo M. ;
Teixeira, Andreia .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01) :19-37
[3]   Critical nonlinearity exponent and self-similar asymptotics for Levy conservation laws [J].
Biler, P ;
Karch, G ;
Woyczynski, WA .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (05) :613-637
[4]  
BOGACHEV V. I, 2007, Measure Theory, V1, DOI DOI 10.1371/journal.pgen.1000083
[5]  
Bouchut F, 2005, ANN SCUOLA NORM-SCI, V4, P1
[6]   ONE-DIMENSIONAL TRANSPORT EQUATIONS WITH DISCONTINUOUS COEFFICIENTS [J].
Bouchut, F. ;
James, F. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (07) :891-933
[7]  
Bressan A, 2021, COMMUN MATH SCI, V19, P1447
[8]   On Traffic Flow with Nonlocal Flux: A Relaxation Representation [J].
Bressan, Alberto ;
Shen, Wen .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 237 (03) :1213-1236
[9]   Decay of entropy solutions of nonlinear conservation laws [J].
Chen, GQ ;
Frid, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 146 (02) :95-127
[10]   A general result on the approximation of local conservation laws by nonlocal conservation laws: The singular limit problem for exponential kernels [J].
Coclite, Giuseppe Maria ;
Coron, Jean-Michel ;
De Nitti, Nicola ;
Keimer, Alexander ;
Pflug, Lukas .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2023, 40 (05) :1205-1223