Bidirectional Piecewise Linear Representation of Time Series and its Application in Clustering

被引:3
作者
Shi, Wen [1 ,2 ]
Karastoyanova, Dimka [2 ]
Huang, Yongming [1 ]
Zhang, Guobao [1 ]
机构
[1] Southeast Univ, Sch Automat Engn, Nanjing 210006, Peoples R China
[2] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intellig, NL-9747 AG Groningen, Netherlands
关键词
Time series analysis; Market research; Turning; Time measurement; Fitting; Task analysis; Indexes; Bidirectional piecewise linear representation (BPLR); hierarchical clustering; linear fitting (LF) time series; similarity measure; time-series data;
D O I
10.1109/TIM.2023.3318728
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The high dimensionality of time-series data presents challenges for direct mining, including time and computational resource costs. In this study, a novel data representation method for time series is proposed and validated in a hierarchical clustering task. First, the bidirectional segmentation algorithm, called BPLR, is introduced for piecewise linear representation (PLR). Through this method, the original time series is transformed into a set of linear fitting (LF) functions, thereby producing a concise, lower-dimensional LF time series that encapsulates the original data. Next, based on dynamic time warping (DTW) distance, a new similarity measure is proposed to compute the distance between any two LF time series, which is called LF-DTW distance. The proposed LF-DTW distance exhibits good performance in handling time-scale distortions between time series. Finally, hierarchical clustering is realized based on the proposed LF-DTW distance. The efficiency and advantages of the proposed approach are validated through experimental results using real-world data. Owing to its ability to capture the inherent structure of time series, the proposed approach consistently outperforms methods based on classic distance metrics and other existing clustering algorithms.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] CONVEX CLUSTERING FOR AUTOCORRELATED TIME SERIES
    Revay, Max
    Solo, Victor
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3313 - 3317
  • [32] Evolutionary hierarchical time series clustering
    Chis, Monica
    Grosan, Crina
    ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 1, 2006, : 451 - 455
  • [33] Time series clustering with ARMA mixtures
    Xiong, YM
    Yeung, DY
    PATTERN RECOGNITION, 2004, 37 (08) : 1675 - 1689
  • [34] Clustering of time series data - a survey
    Liao, TW
    PATTERN RECOGNITION, 2005, 38 (11) : 1857 - 1874
  • [35] Temporal Multi-Features Representation Learning-Based Clustering for Time-Series Data
    Lee, Jaehoon
    Kim, Dohee
    Sim, Sunghyun
    IEEE ACCESS, 2024, 12 : 87675 - 87690
  • [36] Change Point Detection and Node Clustering for Time Series of Graphs
    Xu, Cong
    Lee, Thomas C. M.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 3165 - 3180
  • [37] Multiview Unsupervised Shapelet Learning for Multivariate Time Series Clustering
    Zhang, Nan
    Sun, Shiliang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4981 - 4996
  • [38] Time-Series Clustering Based on the Characterization of Segment Typologies
    Guijo-Rubio, David
    Manuel Duran-Rosal, Antonio
    Antonio Gutierrez, Pedro
    Troncoso, Alicia
    Hervas-Martinez, Cesar
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (11) : 5409 - 5422
  • [39] Time Series Data Generation by Linear Response Model An Application of Linear Response Theory to Finance
    Naritomi Y.
    Adachi T.
    Transactions of the Japanese Society for Artificial Intelligence, 2024, 39 (04)
  • [40] A Fast Semi-Supervised Clustering Framework for Large-Scale Time Series Data
    He, Guoliang
    Pan, Yanzhou
    Xia, Xuewen
    He, Jinrong
    Peng, Rong
    Xiong, Neal N.
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (07): : 4201 - 4216