GROBNER BASES FOR MODULES OVER PRUFER DOMAINS

被引:0
作者
Petrovic, Zoran Z. [1 ]
Roslavcev, Maja [1 ]
机构
[1] Univ Belgrade, Fac Math, Studentski Trg 16, Belgrade 11000, Serbia
来源
MATHEMATICAL REPORTS | 2023年 / 25卷 / 03期
关键词
Prufer domains; Grobner bases;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a Prufer domain of Krull dimension one. We prove the existence of Grobner bases for finitely generated submodules of finitely generated free modules over R[X], where the term order is POT, or, "position over term". In order to do this, we first prove that there is a Grobner basis for finitely generated ideals in R[X], which is a special case of the main result. The proof is based on the results from [3]. In addition to this we show, in the case of valuation domains, that every Grobner basis is actually a strong Grobner basis.
引用
收藏
页码:495 / 503
页数:9
相关论文
共 8 条
[1]  
Adams W.W., 1994, An introduction to Grobner bases, V3
[2]   Grobner bases and primary decomposition in polynomial rings in one variable over Dedekind domains [J].
Adams, WW ;
Loustaunau, P .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 121 (01) :1-15
[3]  
Fontana M., 1997, MONOGRAPHS TXB PURE, V203
[4]  
Gilmer R., 1972, Multiplicative Ideal Theory
[5]  
GLAZ S, 1989, LECT NOTES MATH, V1371, P1
[6]   The Grobner ring conjecture in one variable [J].
Lombardi, Henri ;
Schuster, Peter ;
Yengui, Ihsen .
MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (3-4) :1181-1185
[7]  
Yengui I, 2015, LECT NOTES MATH, V2138, P1, DOI 10.1007/978-3-319-19494-3
[8]   The Grobner ring conjecture in the lexicographic order case [J].
Yengui, Ihsen .
MATHEMATISCHE ZEITSCHRIFT, 2014, 276 (1-2) :261-265