Run and Chase: Towards Accurate Source-Free Domain Adaptive Object Detection

被引:0
|
作者
Lin, Luojun [1 ]
Yang, Zhifeng [1 ]
Liu, Qipeng [1 ]
Yu, Yuanlong [1 ]
Lin, Qifeng [1 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou, Peoples R China
来源
2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME | 2023年
基金
中国国家自然科学基金;
关键词
Object Detection; Transfer Learning; Unsupervised Domain Adaptation;
D O I
10.1109/ICME55011.2023.00418
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, there has been increasing interest in the Source-Free Domain Adaptive Object Detection task, which involves training an object detector on the unlabeled target data using a pre-trained source model without accessing the source data. Most related methods are developed from the mean-teacher framework, which aims to train the student model closer to the teacher model via a pseudo labeling manner, where the teacher model is the exponential-moving-average of the student models at different time-steps. Following this line of works, we propose a Run-and-Chase Mutual-Learning method to strengthen the interactions between the student model and the teacher model in both feature and prediction levels. In our method, the student model is optimized to run away from the teacher model at the feature level, while chasing the teacher model at the prediction level. In this way, the student model is forced to be distinguishable at different time-steps, so that the teacher model can acquire more diverse task-related information and produce higher-accuracy pseudo labels. As the training goes, the student and teacher models are updated iteratively and promoted mutually, which can prevent the model collapse problem. Extensive experiments are conducted to validate the effectiveness of our method.
引用
收藏
页码:2453 / 2458
页数:6
相关论文
共 50 条
  • [21] USDAP: universal source-free domain adaptation based on prompt learning
    Shao, Xun
    Shao, Mingwen
    Chen, Sijie
    Liu, Yuanyuan
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (05)
  • [22] Crots: Cross-Domain Teacher-Student Learning for Source-Free Domain Adaptive Semantic Segmentation
    Luo, Xin
    Chen, Wei
    Liang, Zhengfa
    Yang, Longqi
    Wang, Siwei
    Li, Chen
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (01) : 20 - 39
  • [23] Unleashing Knowledge Potential of Source Hypothesis for Source-Free Domain Adaptation
    Hu, Bingyu
    Liu, Jiawei
    Zheng, Kecheng
    Zha, Zheng-Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 5422 - 5434
  • [24] Two-stage structural information enhancement for source-free domain adaptation
    Sijie Chen
    Mingwen Shao
    Lixu Zhang
    Zhiyuan Bao
    Machine Vision and Applications, 2023, 34
  • [25] A PRIVACY-PRESERVING APPROACH FOR MULTI-SOURCE DOMAIN ADAPTIVE OBJECT DETECTION
    Lu, Peggy Joy
    Jui, Chia-Yung
    Chuang, Jen-Hui
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1075 - 1079
  • [26] Uncertainty-Induced Transferability Representation for Source-Free Unsupervised Domain Adaptation
    Pei, Jiangbo
    Jiang, Zhuqing
    Men, Aidong
    Chen, Liang
    Liu, Yang
    Chen, Qingchao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 2033 - 2048
  • [27] Two-stage structural information enhancement for source-free domain adaptation
    Chen, Sijie
    Shao, Mingwen
    Zhang, Lixu
    Bao, Zhiyuan
    MACHINE VISION AND APPLICATIONS, 2023, 34 (06)
  • [28] Source-Free Unsupervised Domain Adaptation with Sample Transport Learning
    Qing Tian
    Chuang Ma
    Feng-Yuan Zhang
    Shun Peng
    Hui Xue
    Journal of Computer Science and Technology, 2021, 36 : 606 - 616
  • [29] SFDA-CD: A Source-Free Unsupervised Domain Adaptation for VHR Image Change Detection
    Wang, Jingxuan
    Wu, Chen
    REMOTE SENSING, 2024, 16 (07)
  • [30] Source-Free Open Compound Domain Adaptation in Semantic Segmentation
    Zhao, Yuyang
    Zhong, Zhun
    Luo, Zhiming
    Lee, Gim Hee
    Sebe, Nicu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 7019 - 7032