Investigating Membership Inference Attacks under Data Dependencies

被引:3
|
作者
Humphries, Thomas [1 ]
Oya, Simon [1 ]
Tulloch, Lindsey [1 ]
Rafuse, Matthew [1 ]
Goldberg, Ian [1 ]
Hengartner, Urs [1 ]
Kerschbaum, Florian [1 ]
机构
[1] Univ Waterloo, Waterloo, ON, Canada
来源
2023 IEEE 36TH COMPUTER SECURITY FOUNDATIONS SYMPOSIUM, CSF | 2023年
基金
加拿大自然科学与工程研究理事会;
关键词
Membership Inference Attacks; Differential Privacy; PRIVACY;
D O I
10.1109/CSF57540.2023.00013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Training machine learning models on privacy-sensitive data has become a popular practice, driving innovation in ever-expanding fields. This has opened the door to new attacks that can have serious privacy implications. One such attack, the Membership Inference Attack (MIA), exposes whether or not a particular data point was used to train a model. A growing body of literature uses Differentially Private (DP) training algorithms as a defence against such attacks. However, these works evaluate the defence under the restrictive assumption that all members of the training set, as well as non-members, are independent and identically distributed. This assumption does not hold for many real-world use cases in the literature. Motivated by this, we evaluate membership inference with statistical dependencies among samples and explain why DP does not provide meaningful protection (the privacy parameter epsilon scales with the training set size n) in this more general case. We conduct a series of empirical evaluations with off-the-shelf MIAs using training sets built from real-world data showing different types of dependencies among samples. Our results reveal that training set dependencies can severely increase the performance of MIAs, and therefore assuming that data samples are statistically independent can significantly underestimate the performance of MIAs.
引用
收藏
页码:473 / 488
页数:16
相关论文
共 50 条
  • [21] Membership Inference Attacks Against Semantic Segmentation Models
    Chobola, Tomas
    Usynin, Dmitrii
    Kaissis, Georgios
    PROCEEDINGS OF THE 16TH ACM WORKSHOP ON ARTIFICIAL INTELLIGENCE AND SECURITY, AISEC 2023, 2023, : 43 - 53
  • [22] Secure Aggregation Is Not Private Against Membership Inference Attacks
    Ngo, Khac-Hoang
    Ostman, Johan
    Durisi, Giuseppe
    Graell i Amat, Alexandre
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES-RESEARCH TRACK, PT VI, ECML PKDD 2024, 2024, 14946 : 180 - 198
  • [23] Demystifying Membership Inference Attacks in Machine Learning as a Service
    Truex, Stacey
    Liu, Ling
    Gursoy, Mehmet Emre
    Yu, Lei
    Wei, Wenqi
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2021, 14 (06) : 2073 - 2089
  • [24] MiDA: Membership inference attacks against domain adaptation
    Zhang, Yuanjie
    Zhao, Lingchen
    Wang, Qian
    ISA TRANSACTIONS, 2023, 141 : 103 - 112
  • [25] Defending against membership inference attacks: RM Learning is all you need
    Zhang, Zheng
    Ma, Jianfeng
    Ma, Xindi
    Yang, Ruikang
    Wang, Xiangyu
    Zhang, Junying
    INFORMATION SCIENCES, 2024, 670
  • [26] TOWARDS MODEL QUANTIZATION ON THE RESILIENCE AGAINST MEMBERSHIP INFERENCE ATTACKS
    Kowalski, Charles
    Famili, Azadeh
    Lao, Yingjie
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3646 - 3650
  • [27] TransMIA: Membership Inference Attacks Using Transfer Shadow Training
    Hidano, Seira
    Murakami, Takao
    Kawamoto, Yusuke
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [28] Comparative Analysis of Membership Inference Attacks in Federated and Centralized Learning
    Abbasi Tadi, Ali
    Dayal, Saroj
    Alhadidi, Dima
    Mohammed, Noman
    INFORMATION, 2023, 14 (11)
  • [29] Attribute-Based Membership Inference Attacks and Defenses on GANs
    Sun, Hui
    Zhu, Tianqing
    Li, Jie
    Ji, Shoulin
    Zhou, Wanlei
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (04) : 2376 - 2393
  • [30] Defending Against Membership Inference Attacks With High Utility by GAN
    Hu, Li
    Li, Jin
    Lin, Guanbiao
    Peng, Shiyu
    Zhang, Zhenxin
    Zhang, Yingying
    Dong, Changyu
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (03) : 2144 - 2157