Personalized Point-of-Interest Recommendation Using Improved Graph Convolutional Network in Location-Based Social Network

被引:0
|
作者
Liu, Jingtong [1 ]
Yi, Huawei [1 ]
Gao, Yixuan [1 ]
Jing, Rong [2 ]
机构
[1] Liaoning Univ Technol, Sch Elect & Informat Engn, Jinzhou 121001, Peoples R China
[2] Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Peoples R China
关键词
POI recommendation; location social network; data sparsity; graph convolutional network; social influence;
D O I
10.3390/electronics12163495
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data sparsity limits the performance of point-of-interest (POI) recommendation models, and the existing works ignore the higher-order collaborative influence of users and POIs and lack in-depth mining of user social influence, resulting in unsatisfactory recommendation results. To address the above issues, this paper proposes a personalized POI recommendation using an improved graph convolutional network (PPR_IGCN) model, which integrates collaborative influence and social influence into POI recommendations. On the one hand, a user-POI interaction graph, a POI-POI graph, and a user-user graph are constructed based on check-in data and social data in a location-based social network (LBSN). The improved graph convolutional network (GCN) is used to mine the higher-order collaborative influence of users and POIs in the three types of relationship graphs and to deeply extract the potential features of users and POIs. On the other hand, the social influence of the user's higher-order social friends and community neighbors on the user is obtained according to the user's higher-order social embedding vector learned in the user-user graph. Finally, the captured user and POI's higher-order collaborative influence and social influence are used to predict user preferences. The experimental results on Foursquare and Yelp datasets indicate that the proposed model PPR_IGCN outperforms other models in terms of precision, recall, and normalized discounted cumulative gain (NDCG), which proves the effectiveness of the model.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Content-aware point-of-interest recommendation based on convolutional neural network
    Xing, Shuning
    Liu, Fang'ai
    Wang, Qianqian
    Zhao, Xiaohui
    Li, Tianlai
    APPLIED INTELLIGENCE, 2019, 49 (03) : 858 - 871
  • [22] Personalized Point-of-Interest Recommendation Based on Social and Geographical Influence
    Su, Chang
    Gong, Bin
    Xie, Xianzhong
    AICCC 2021: 2021 4TH ARTIFICIAL INTELLIGENCE AND CLOUD COMPUTING CONFERENCE, 2021, : 130 - 137
  • [23] Learning Recency and Inferring Associations in Location Based Social Network for Emotion Induced Point-of-Interest Recommendation
    Logesh, R.
    Subramaniyaswamy, V
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2017, 33 (06) : 1629 - 1647
  • [24] Point-of-interest recommendation model considering strength of user relationship for location-based social networks
    Zhou, Yuhe
    Yang, Guangfei
    Yan, Bing
    Cai, Yuanfeng
    Zhu, Zhiguo
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 199
  • [25] Point-of-interest recommendation in location-based social networks based on collaborative filtering and spatial kernel weighting
    Vahidnia, Mohammad H.
    GEOCARTO INTERNATIONAL, 2022, 37 (26) : 13949 - 13972
  • [26] HRec: Heterogeneous Graph Embedding-Based Personalized Point-of-Interest Recommendation
    Su, Yijun
    Li, Xiang
    Zha, Daren
    Tang, Wei
    Jiang, Yiwen
    Xiang, Ji
    Gao, Neng
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT III, 2019, 11955 : 37 - 49
  • [27] Individual location recommendation for location-based social network
    Xu, Ya-Bin
    Sun, Xiao-Chen
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2015, 38 (05): : 118 - 124
  • [28] A Personalized Location Recommendation based on Convolutional Neural Network
    Yan, Chi
    Shi, Yuliang
    PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 1516 - 1519
  • [29] An improved recommendation based on graph convolutional network
    Yichen He
    Yijun Mao
    Xianfen Xie
    Wanrong Gu
    Journal of Intelligent Information Systems, 2022, 59 : 801 - 823
  • [30] An improved recommendation based on graph convolutional network
    He, Yichen
    Mao, Yijun
    Xie, Xianfen
    Gu, Wanrong
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2022, 59 (03) : 801 - 823