A "fundamental lemma" for continuous-time systems, with applications to data-driven simulation

被引:8
|
作者
Rapisarda, P. [1 ]
Camlibel, M. K. [2 ]
van Waarde, H. J. [2 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton, England
[2] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intellig, Groningen, Netherlands
关键词
Persistency of excitation; Continuous-time linear time-invariant; systems; Chebyshev polynomials; Data-driven simulation; PERSISTENCY;
D O I
10.1016/j.sysconle.2023.105603
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We are given one input-output (i-o) trajectory (u, y) produced by a linear, continuous time-invariant system, and we compute its Chebyshev polynomial series representation. We show that if the input trajectory u is sufficiently persistently exciting according to the definition in Rapisarda et al. (2023), then the Chebyshev polynomial series representation of every i-o trajectory can be computed from that of (u, y). We apply this result to data-driven simulation of continuous-time systems.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A continuous-time fundamental lemma and its application in data-driven optimal control☆
    Schmitz, Philipp
    Faulwasser, Timm
    Rapisarda, Paolo
    Worthmann, Karl
    SYSTEMS & CONTROL LETTERS, 2024, 194
  • [2] Data-driven simulation of continuous-time linear time-invariant systems: the autonomous case
    Rapisarda, P.
    Van Waarde, H. J.
    Camlibel, M. K.
    IFAC PAPERSONLINE, 2023, 56 (02): : 2244 - 2249
  • [3] Data-driven Iterative Learning Control for Continuous-Time Systems
    Chu, Bing
    Rapisarda, Paolo
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4626 - 4631
  • [4] Orthogonal Polynomial Bases for Data-Driven Analysis and Control of Continuous-Time Systems
    Rapisarda, P.
    van Waarde, Henk J.
    Camlibel, M. K.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (07) : 4307 - 4319
  • [5] Data-driven analysis and control of continuous-time systems under aperiodic sampling
    Berberich, Julian
    Wildhagen, Stefan
    Hertneck, Michael
    Allgoewer, Frank
    IFAC PAPERSONLINE, 2021, 54 (07): : 210 - 215
  • [6] Fundamental Lemma for Data-Driven Analysis of Linear Parameter-Varying Systems
    Verhoek, Chris
    Toth, Roland
    Haesaert, Sofie
    Koch, Anne
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 5040 - 5046
  • [7] A Time-Delay Modeling Approach for Data-Driven Predictive Control of Continuous-Time Systems
    Liu, Juan
    Yang, Xindi
    Zhang, Hao
    Wang, Zhuping
    Yan, Huaicheng
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 6408 - 6420
  • [8] Localized data-driven consensus control for continuous-time multi-agent systems
    Chang, Zeze
    Li, Zhongkui
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2024,
  • [9] Formal Verification of Unknown Discrete- and Continuous-Time Systems: A Data-Driven Approach
    Nejati, Ameneh
    Lavaei, Abolfazl
    Jagtap, Pushpak
    Soudjani, Sadegh
    Zamani, Majid
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (05) : 3011 - 3024
  • [10] Data-Driven Based Optimal Output-Feedback Control of Continuous-Time Systems
    Li, Zican
    Wu, Tao
    Na, Jing
    Zhao, Jun
    Gao, Guanbin
    Herrmann, Guido
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC), 2018,