Morphology Control of Li2S Deposition via Geometrical Effect of Cobalt-Edged Nickel Alloy to Improve Performance of Lithium-Sulfur Batteries

被引:21
|
作者
Jiang, Yicheng [1 ]
Liu, Sheng [1 ]
Gao, Xueping [1 ]
Li, Guoran [1 ]
机构
[1] Nankai Univ, Inst New Energy Mat Chem, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
基金
美国国家科学基金会;
关键词
electrocatalysis; geometrical effects; Li2S deposition; lithium-sulfur batteries; morphology controls; Ni-Co alloys; ENERGY-DENSITY; S BATTERIES; ELECTRODES; KINETICS; CATHODE;
D O I
10.1002/adfm.202304965
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable lithium-sulfur batteries operate based on the interconversion between sulfur and Li2S. Due to its insoluble and insulated nature, Li2S deposition is kinetically sluggish, which has an important effect on performance of lithium-sulfur batteries. In this work, cobalt-edged nickel alloy is designed and used as host material of sulfur cathodes to manipulate the behavior and morphology of Li2S deposition. It is found that Co and Ni have different catalytic kinetic characteristics for Li2S deposition reactions, and the difference in nucleation and growth rates of Li2S and geometrical effect of Co-edged Ni alloy can cause a well-spaced morphology to prevent premature surface passivation, thereby improving sulfur utilization and rate capability of the cathodes. As a result, the thick sulfur cathode using cobalt-edged nickel as host material with a sulfur loading of 4.0 mg cm(-2) shows an initial capacity of 1229.3 mA h g(-1) at electrolyte/sulfur ratio of 8 & mu;L mg(-1), as well as high capacity retention of 92.2% at 0.2 C during 100 cycles. These results provide an alternative perspective not only for developing new mixed host materials for lithium-sulfur batteries, and also for further understanding the existing works using composite host materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Promoted Deposition of Three-Dimensional Li2S on Catalytic Co Phthalocyanine Nanorods for Stable High-Loading Lithium-Sulfur Batteries
    Yang, Xiao-Xia
    Li, Xu-Ting
    Zhao, Chang-Feng
    Fu, Zhang-Hua
    Zhang, Qing-Shuai
    Hu, Cheng
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (29) : 32752 - 32763
  • [12] Unraveling the Li2S Deposition Process on a Polished Graphite Cathode for Enhancing Discharge Capacity of Lithium-Sulfur Batteries
    Shen, Chao
    Andrei, Petru
    Zheng, Jim P.
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (05) : 3860 - 3868
  • [13] Enhancing the Efficient Utilization of Li2S in Lithium-Sulfur Batteries via Functional Additive Diethyldiselenide
    Li, Zhaoyang
    Wang, Mengran
    Yang, Jiewei
    Hong, Bo
    Lai, Yanqing
    Li, Jie
    ENERGY & FUELS, 2024, 38 (16) : 15762 - 15770
  • [14] Solvent-Mediated Li2S Electrodeposition: A Critical Manipulator in Lithium-Sulfur Batteries
    Li, Zhejun
    Zhou, Yucun
    Wang, Yu
    Lu, Yi-Chun
    ADVANCED ENERGY MATERIALS, 2019, 9 (01)
  • [15] Platinum Electrocatalyst Promoting Redox Kinetics of Li2S and Regulating Li2S Nucleation for Lithium-Sulfur Batteries
    Han, Fengfeng
    Fan, Liwen
    Zhang, Zhiguo
    Zhang, Xitian
    Wu, Lili
    SMALL, 2024, 20 (14)
  • [16] Tailoring-Orientated Deposition of Li2S for Extreme Fast-Charging Lithium-Sulfur Batteries
    Yu, Jeong-Hoon
    Lee, Byong-June
    Zhou, Shiyuan
    Sung, Jong Hun
    Zhao, Chen
    Shin, Cheol-Hwan
    Yu, Bo
    Xu, Gui-Liang
    Amine, Khalil
    Yu, Jong-Sung
    ACS NANO, 2024, 18 (46) : 31974 - 31986
  • [17] Regulation of Li2S Deposition and Dissolution to Achieve an Efficient Bidirectional Lithium-Sulfur Battery
    You, Dan
    Yang, Wenhao
    Liang, Yongshun
    Yang, Chunman
    Yu, Yiwei
    Zhu, Ziyi
    Li, Xue
    Zhang, Yiyong
    Zhang, Yingjie
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [18] Improving lithium-sulfur battery performance by protecting lithium anode with Li2S
    Sun, Yu
    Zhang, Ting
    Ai, Guo
    Luo, Birong
    Li, Dejun
    Zhang, Bo
    IONICS, 2024, 30 (10) : 6017 - 6024
  • [19] Toward High Performance Lithium-Sulfur Batteries Based on Li2S Cathodes and Beyond: Status, Challenges, and Perspectives
    Su, Dawei
    Zhou, Dong
    Wang, Chengyin
    Wang, Guoxiu
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (38)
  • [20] A new insight on capacity fading of lithium-sulfur batteries: The effect of Li2S phase structure
    Noh, Hyungjun
    Song, Jongchan
    Park, Jung-Ki
    Kim, Hee-Tak
    JOURNAL OF POWER SOURCES, 2015, 293 : 329 - 335