Two-phase Stefan problem for generalized heat equation with nonlinear thermal coefficients

被引:2
作者
Nauryz, Targyn [1 ,2 ]
Briozzo, Adriana C. [3 ,4 ]
机构
[1] Kazakh British Tech Univ, Dept Int Sch Econ, Tole Bi 59, Alma Ata, Kazakhstan
[2] Inst Math & Math Modeling, Pushkina 125, Alma Ata, Kazakhstan
[3] Consejo Nacl Invest Cient & Tecn, Rosario, Argentina
[4] Univ Austral, Dept Matemat, FCE, Paraguay 1950, RA-2000FZF Rosario, Argentina
关键词
Stefan problem; Similarity solution; Nonlinear integral equations; Nonlinear thermal coefficient; Fixed point theorem; Incomplete gamma function; DIFFUSION;
D O I
10.1016/j.nonrwa.2023.103944
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study a mathematical model of the heat transfer in semi infinite material with a variable cross section, when the radial component of the temperature gradient can be neglected in comparison with the axial component. In particular, the temperature distribution in liquid and solid phases of such kind of body can be modeled by Stefan problem for the generalized heat equation. The method of solution is based on similarity principle, which enables us to reduce generalized heat equation to nonlinear ordinary differential equation. Moreover, we determine temperature solution for two phases and free boundaries which describe the position of boiling and melting interfaces. Existence and uniqueness of the similarity type solution is provided by using the fixed point Banach theorem. & COPY; 2023 Published by Elsevier Ltd.
引用
收藏
页数:20
相关论文
共 24 条
[1]  
Alexiades V., 2018, Mathematical Modeling of Melting and Freezing Processes
[2]   EXACT-SOLUTIONS FOR WATER INFILTRATION WITH AN ARBITRARY SURFACE FLUX OR NONLINEAR SOLUTE ADSORPTION [J].
BARRY, DA ;
SANDER, GC .
WATER RESOURCES RESEARCH, 1991, 27 (10) :2667-2680
[3]   ON THE REMARKABLE NON-LINEAR DIFFUSION EQUATION (DELTA-DELTA-X)(A(U+B)-2(DELTA-U-DELTA-X))-(DELTA-U-DELTA-T) = 0 [J].
BLUMAN, G ;
KUMEI, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (05) :1019-1023
[4]  
Bollati J, 2018, COMMUN APPL ANAL, V2, P309
[5]   Determination of unknown thermal coefficients in a non-classical Stefan problem [J].
Bollati, Julieta ;
Briozzo, Adriana C. ;
Natale, Maria F. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
[6]   Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients [J].
Bollati, Julieta ;
Briozzo, Adriana C. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2021, 134
[7]   Nonlinear Stefan problem with convective boundary condition in Storm's materials [J].
Briozzo, Adriana C. ;
Natale, Maria F. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (02)
[8]  
Briozzo AC, 2006, ELECTRON J DIFFER EQ
[9]   Nonlinear diffusion in arterial tissues: a free boundary problem [J].
Burini, Diletta ;
De Lillo, Silvana ;
Fioriti, Gioia .
ACTA MECHANICA, 2018, 229 (10) :4215-4228
[10]  
Cannon John Rozier, 1984, The One-Dimensional Heat Equation