Squeezing-induced nonreciprocal photon blockade in an optomechanical microresonator

被引:17
作者
Wang, Dong-yang [1 ]
Yan, Lei-lei [1 ]
Su, Shi-lei [1 ]
Bai, Cheng-hua [2 ]
Wang, Hong-fu [3 ]
Liang, Erjun [1 ]
机构
[1] Zhengzhou Univ, Sch Phys & Microelect, Zhengzhou 450001, Henan, Peoples R China
[2] North Univ China, Sch Sci, Dept Phys, Taiyuan 030051, Shanxi, Peoples R China
[3] Yanbian Univ, Coll Sci, Dept Phys, Yanji 133002, Jilin, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
OPTICAL CAVITY;
D O I
10.1364/OE.493208
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a scheme to generate nonreciprocal photon blockade in a stationary whispering gallery microresonator system based on two physical mechanisms. One of the two mechanisms is inspired by recent work [Phys. Rev. Lett. 128, 083604 (2022)], where the quantum squeezing caused by parametric interaction not only shifts the optical frequency of propagating mode but also enhances its optomechanical coupling, resulting in a nonreciprocal conventional photon blockade phenomenon. On the other hand, we also give another mechanism to generate stronger nonreciprocity of photon correlation according to the destructive quantum interference. Comparing these two strategies, the required nonlinear strength of parametric interaction in the second one is smaller, and the broadband squeezed vacuum field used to eliminate thermalization noise is no longer needed. All analyses and optimal parameter relations are further verified by numerically simulating the quantum master equation. Our proposed scheme opens a new avenue for achieving the nonreciprocal single photon source without stringent requirements, which may have critical applications in quantum communication, quantum information processing, and topological photonics.& COPY; 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:22343 / 22357
页数:15
相关论文
共 67 条
[1]   Photon blockade in an optical cavity with one trapped atom [J].
Birnbaum, KM ;
Boca, A ;
Miller, R ;
Boozer, AD ;
Northup, TE ;
Kimble, HJ .
NATURE, 2005, 436 (7047) :87-90
[2]   Electromagnetic Nonreciprocity [J].
Caloz, Christophe ;
Alu, Andrea ;
Tretyakov, Sergei ;
Sounas, Dimitrios ;
Achouri, Karim ;
Deck-Leger, Zoe-Lise .
PHYSICAL REVIEW APPLIED, 2018, 10 (04)
[3]  
Chang L, 2014, NAT PHOTONICS, V8, P524, DOI [10.1038/nphoton.2014.133, 10.1038/NPHOTON.2014.133]
[4]   Broken symmetries, non-reciprocity, and multiferroicity [J].
Cheong, Sang-Wook ;
Talbayev, Diyar ;
Kiryukhin, Valery ;
Saxena, Avadh .
NPJ QUANTUM MATERIALS, 2018, 3
[5]   Controlling the Flow of Light Using the Inhomogeneous Effective Gauge Field that Emerges from Dynamic Modulation [J].
Fang, Kejie ;
Fan, Shanhui .
PHYSICAL REVIEW LETTERS, 2013, 111 (20)
[6]   Nonreciprocity in Photon Pair Correlations of Classically Reciprocal Systems [J].
Graf, Austin ;
Rogers, Steven D. ;
Staffa, Jeremy ;
Javid, Usman A. ;
Griffith, Dana H. ;
Lin, Qiang .
PHYSICAL REVIEW LETTERS, 2022, 128 (21)
[7]   Generation of nonreciprocal single photons in the chiral waveguide-cavity-emitter system [J].
Gu, Wen-Ju ;
Wang, Lei ;
Yi, Zhen ;
Sun, Li-Hui .
PHYSICAL REVIEW A, 2022, 106 (04)
[8]   Enhancing Optomechanical Coupling via the Josephson Effect [J].
Heikkila, T. T. ;
Massel, F. ;
Tuorila, J. ;
Khan, R. ;
Sillanpaa, M. A. .
PHYSICAL REVIEW LETTERS, 2014, 112 (20)
[9]   Nonreciprocal Photon Blockade [J].
Huang, Ran ;
Miranowicz, Adam ;
Liao, Jie-Qiao ;
Nori, Franco ;
Jing, Hui .
PHYSICAL REVIEW LETTERS, 2018, 121 (15)
[10]   Loss-induced nonreciprocity [J].
Huang, Xinyao ;
Lu, Cuicui ;
Liang, Chao ;
Tao, Honggeng ;
Liu, Yong-Chun .
LIGHT-SCIENCE & APPLICATIONS, 2021, 10 (01)