GEOMETRIC INEQUALITIES FOR SOLVING VARIATIONAL INEQUALITY PROBLEMS IN CERTAIN BANACH SPACES

被引:4
作者
Adamu, A. [1 ,2 ]
Chidume, C. E. [3 ]
Kitkuan, D. [4 ]
Kumam, P. [2 ,5 ]
机构
[1] Near East Univ, Operat Res Ctr Healthcare, Nicosia, Turkiye
[2] King Mongkuts Univ Technol Thonburi, Ctr Excellence Theoret & Computat Sci, Sci Lab Bldg,126 Pracha Uthit Rd, Bangkok, Thailand
[3] African Univ Sci & Technol, Math Inst, Abuja, Nigeria
[4] Rambhai Barni Rajabhat Univ, Fac Sci & Technol, Dept Math, Chanthaburi 22000, Thailand
[5] King Mongkuts Univ Technol Thonburi, Fac Sci, Dept Math, Fixed Point Res Lab,Fixed Point Theory & Applicat, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
来源
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS | 2023年 / 7卷 / 02期
关键词
Relatively nonexpansive mapping; Subgradient method; Variational inequality; STRONG-CONVERGENCE; PROJECTION METHOD; MAPPINGS; ALGORITHM;
D O I
10.23952/jnva.7.2023.2.07
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop some new geometric inequalities in p-uniformly convex and uni-formly smooth real Banach spaces with p > 1. We use the inequalities as tools to obtain the strong convergence of the sequence generated by a subsgradient method to a solution that solves fixed point and variational inequality problems. Furthermore, the convergence theorem established can be applica-ble in, for example, Lp(& omega;), where & omega; C R is bounded set and lp(R) for p E (2, & INFIN;). Finally, numerical implementations of the proposed method in the real Banach space L5([-1,1]) are presented.
引用
收藏
页码:267 / 278
页数:12
相关论文
共 29 条
[1]   Inertial viscosity-type iterative method for solving inclusion problems with applications [J].
Adamu, A. ;
Kitkuan, D. ;
Padcharoen, A. ;
Chidume, C. E. ;
Kumam, P. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 194 :445-459
[2]   Approximation method for monotone inclusion problems in real Banach spaces with applications [J].
Adamu, Abubakar ;
Kitkuan, Duangkamon ;
Kumam, Poom ;
Padcharoen, Anantachai ;
Seangwattana, Thidaporn .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
[3]  
Alber Y., 2006, Nonlinear Ill Posed Problems of Monotone Type
[4]   A New Double-Projection Method for Solving Variational Inequalities in Banach Spaces [J].
Cai, Gang ;
Gibali, Aviv ;
Iyiola, Olaniyi S. ;
Shehu, Yekini .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (01) :219-239
[5]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[6]   Common Solutions to Variational Inequalities [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon ;
Sabach, Shoham .
SET-VALUED AND VARIATIONAL ANALYSIS, 2012, 20 (02) :229-247
[7]  
Cheng Q., 2012, ABSTR APPL ANAL, V2012, P1
[8]  
Chidume C., 2018, Adv. Nonlinear Var. Inequal, V21, P46
[9]  
Chidume CE, 2018, CARPATHIAN J MATH, V34, P191
[10]  
Chidume C.E., 2016, PANAMER MATH J, V26, P57