Adaptive method for phase-field fracture using a volume weighted Quickselect algorithm

被引:0
作者
Xie, Kai [1 ]
Zhang, Ruijie [1 ]
Li, Zhongxin [1 ]
Wu, Zhilin [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mech Engn, 200 Xiaolingwei St, Nanjing 210094, Jiangsu, Peoples R China
关键词
Adaptive mesh refinement; Phase-field fracture; Finite element method; Quickselect algorithm; BRITTLE-FRACTURE; CRACK-PROPAGATION; FORMULATION; APPROXIMATION; MODELS; XFEM;
D O I
10.1007/s10704-023-00718-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The phase-field fracture method (PFM) requires an extremely fine mesh to accurately capture the crack topology, which is computationally expensive. In this work, a new adaptive mesh refinement method is proposed for phase-field fracture. Based on the phase field increment, a volume weighted Quickselect algorithm is used to determine the coarsen region and the refined region. The speed of the crack propagation is predicted to control the size of the refined region, which reduces unnecessary degrees of freedom. Several benchmark numerical examples are simulated and the results demonstrate the efficiency and accuracy of the proposed method. In the numerical examples, the computational time using this method is reduced by about 90% compared with the standard PFM.
引用
收藏
页码:247 / 263
页数:17
相关论文
共 44 条
  • [1] Phase-field modeling of ductile fracture
    Ambati, M.
    Gerasimov, T.
    De Lorenzis, L.
    [J]. COMPUTATIONAL MECHANICS, 2015, 55 (05) : 1017 - 1040
  • [2] APPROXIMATION OF FUNCTIONALS DEPENDING ON JUMPS BY ELLIPTIC FUNCTIONALS VIA GAMMA-CONVERGENCE
    AMBROSIO, L
    TORTORELLI, VM
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) : 999 - 1036
  • [3] Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments
    Amor, Hanen
    Marigo, Jean-Jacques
    Maurini, Corrado
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2009, 57 (08) : 1209 - 1229
  • [4] An h-adaptive thermo-mechanical phase field model for fracture
    Badnava, Hojjat
    Msekh, Mohammed A.
    Etemadi, Elahe
    Rabczuk, Timon
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2018, 138 : 31 - 47
  • [5] A phase-field formulation for fracture in ductile materials: Finite defonnation balance law derivation, plastic degradation, and stress triaxiality effects
    Borden, Michael J.
    Hughes, Thomas J. R.
    Landis, Chad M.
    Anvari, Amin
    Lee, Isaac J.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 312 : 130 - 166
  • [6] A phase-field description of dynamic brittle fracture
    Borden, Michael J.
    Verhoosel, Clemens V.
    Scott, Michael A.
    Hughes, Thomas J. R.
    Landis, Chad M.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 217 : 77 - 95
  • [7] Numerical experiments in revisited brittle fracture
    Bourdin, B
    Francfort, GA
    Marigo, JJ
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2000, 48 (04) : 797 - 826
  • [8] The variational approach to fracture
    Bourdin, Blaise
    Francfort, Gilles A.
    Marigo, Jean-Jacques
    [J]. JOURNAL OF ELASTICITY, 2008, 91 (1-3) : 5 - 148
  • [9] A time-discrete model for dynamic fracture based on crack regularization
    Bourdin, Blaise
    Larsen, Christopher J.
    Richardson, Casey L.
    [J]. INTERNATIONAL JOURNAL OF FRACTURE, 2011, 168 (02) : 133 - 143
  • [10] Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method
    Chakraborty, Pritam
    Zhang, Yongfeng
    Tonks, Michael R.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2016, 113 : 38 - 52