Convergence properties of a family of inexact Levenberg-Marquardt methods

被引:0
作者
Zhao, Luyao [1 ]
Tang, Jingyong [1 ]
机构
[1] Xinyang Normal Univ, Coll Math & Stat, Xinyang 464000, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 08期
关键词
nonlinear equations; inexact Levenberg-Marquardt method; global convergence; convergence rate; H delta derian local error bound;
D O I
10.3934/math.2023950
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a family of inexact Levenberg-Marquardt (LM) methods for the nonlinear equations which takes more general LM parameters and perturbation vectors. We derive an explicit formula of the convergence order of these inexact LM methods under the Hdderian local error bound condition and the Hdderian continuity of the Jacobian. Moreover, we develop a family of inexact LM methods with a nonmonotone line search and prove that it is globally convergent. Numerical results for solving the linear complementarity problem are reported.
引用
收藏
页码:18649 / 18664
页数:16
相关论文
共 16 条
[1]   An efficient Levenberg-Marquardt method with a new LM parameter for systems of nonlinear equations [J].
Amini, Keyvan ;
Rostami, Faramarz ;
Caristi, Giuseppe .
OPTIMIZATION, 2018, 67 (05) :637-650
[2]   Convergence properties of the inexact Levenberg-Marquardt method under local error bound conditions [J].
Dan, H ;
Yamashita, N ;
Fukushima, M .
OPTIMIZATION METHODS & SOFTWARE, 2002, 17 (04) :605-626
[3]   A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems [J].
Facchinei, F ;
Kanzow, C .
MATHEMATICAL PROGRAMMING, 1997, 76 (03) :493-512
[4]   ON THE CONVERGENCE RATE OF THE INEXACT LEVENBERG-MARQUARDT METHOD [J].
Fan, Jinyan ;
Pan, Jianyu .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2011, 7 (01) :199-210
[5]   On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption [J].
Fan, JY ;
Yuan, YX .
COMPUTING, 2005, 74 (01) :23-39
[6]   Inexact Levenberg-Marquardt method for nonlinear equations [J].
Fan, JY ;
Pan, JY .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2004, 4 (04) :1223-1232
[7]   On the inexactness level of robust Levenberg-Marquardt methods [J].
Fischer, A. ;
Shukla, P. K. ;
Wang, M. .
OPTIMIZATION, 2010, 59 (02) :273-287
[8]  
Stewart GW., 1990, MATRIX PERTURBATION
[9]   Quadratic convergence analysis of a nonmonotone Levenberg-Marquardt type method for the weighted nonlinear complementarity problem [J].
Tang, Jingyong ;
Zhou, Jinchuan .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 80 (01) :213-244
[10]   A Nonmonotone Smoothing Newton Algorithm for Weighted Complementarity Problem [J].
Tang, Jingyong ;
Zhang, Hongchao .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 189 (03) :679-715