Hemispherical retro-modulation technologies for passive free-space optical communication links

被引:0
|
作者
MacGillivray, Alexander C. [1 ]
Gorgani, Sayra [1 ]
Hristovski, Ilija R. [1 ]
Jenne, Matthias F. [1 ]
Lesack, Nikolai I. [1 ]
Holzman, Jonathan F. [1 ]
机构
[1] Univ British Columbia, Sch Engn, Kelowna, BC V1V IV7, Canada
来源
FREE-SPACE LASER COMMUNICATIONS XXXV | 2023年 / 12413卷
关键词
Retroreflection; modulation; free-space optical communications; electroabsorption; hemispherical retro-modulator;
D O I
10.1117/12.2655454
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we introduce the concept of a hemispherical retro-modulator for the realization of passive free-space optical communication links. The hemispherical retro-modulator is implemented with a high-refractive-index glass (S-LAH79) hemisphere on a semi-insulating-InP (SI-InP) layer, whose thickness dictates the effectiveness of both retroreflection and modulation. A voltage is applied across transparent indium tin oxide (ITO) and gold (Au) films on either side of the SI-InP layer to bring about the desired modulation. The overall device is designed to enable low divergence on the retroreflected beam, as defined by a small divergence angle, and deep modulation on the retroreflected beam, as a result of electroabsorption in the SI-InP layer. To this end, the device is analysed with a ray-based model for retroflection and a unified Franz-Keldysh/Einstein model for modulation in the SI-InP layer. The theoretical results show strong agreement with the experimental results from our prototype. Moreover, the results show effective retroflection and deep modulation-with an applied electric field of 2.167 kV/cm yielding modulation depths of 13%, 34%, and 50% for our 980-nm photons and SI-InP layer thicknesses of 200, 600, and 1,000 mu m, respectively. From this, we deem the SI-InP layer thickness of 600 mu m to be optimal given its combined capabilities for retroflection and modulation. Ultimately, the introduced hemispherical retro-modulator is shown to be an effective element for future realizations of passive free-space optical communication links.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Generalized Block Markov Superposition Transmission over Free-Space Optical Links
    Jinshun Zhu
    Shancheng Zhao
    Xiao Ma
    中国通信, 2017, 14 (09) : 80 - 93
  • [32] Diversity Gain and Outage Probability for MIMO Free-Space Optical Links with Misalignment
    Farid, Ahmed A.
    Hranilovic, Steve
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2012, 60 (02) : 479 - 487
  • [33] Modeling of Hybrid Fiber Optic and Free-Space Optical Communication Systems
    Evran, Serap Kilinc
    Unverdi, N. Özlem
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [34] Impact of misalignment parameter on performance of free-space optical communication system
    Pritam Keshari Sahoo
    Ajay Kumar Yadav
    Optical and Quantum Electronics, 2023, 55
  • [35] Impact of misalignment parameter on performance of free-space optical communication system
    Sahoo, Pritam Keshari
    Yadav, Ajay Kumar
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (02)
  • [36] Measuring the effect of real atmospheric turbulence on coherent free-space optical communications links
    McDonald, Douglas
    Bellossi, Raphael
    Gladysz, Szymon
    LASER COMMUNICATION AND PROPAGATION THROUGH THE ATMOSPHERE AND OCEANS XI, 2022, 12237
  • [37] Coded Free-Space Optical Links over Strong Turbulence and Misalignment Fading Channels
    Sandalidis, Harilaos G.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2011, 59 (03) : 669 - 674
  • [38] Differential pulse-amplitude modulation signalling for free-space optical communications
    Dabiri, Mohammad Taghi
    Sadough, Seyed Mohammad Sajad
    Khalighi, Hammad Ali
    IET OPTOELECTRONICS, 2019, 13 (04) : 155 - 160
  • [39] SIM/SM-Aided Free-Space Optical Communication With Receiver Diversity
    Hwang, Seung-Hoon
    Cheng, Yan
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2014, 32 (14) : 2443 - 2450
  • [40] An Introduction to Free-space Optical Communications
    Henniger, Hennes
    Wilfert, Otakar
    RADIOENGINEERING, 2010, 19 (02) : 203 - 212