Three-Dimensional Fully Coupled Thermo-Hydro-Mechanical Model for Thaw Consolidation of Permafrost

被引:0
|
作者
Liew, Min [1 ,2 ]
Xiao, Ming [2 ]
机构
[1] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA
[2] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
来源
GEO-CONGRESS 2023: GEOTECHNICAL DATA ANALYSIS AND COMPUTATION | 2023年 / 342卷
基金
美国国家科学基金会;
关键词
ALASKA PUBLIC INFRASTRUCTURE;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A fully coupled three-dimensional (3D) thermo-hydro-mechanical (THM) model is developed for simulating the complex multiphysics process of permafrost thaw. The 3D formulation allows the analysis of thaw consolidation problems with complex geometry and boundary conditions. The thermal, hydraulic, and mechanical fields are coupled in this model. Governing equations are derived based on the laws of conservation of each field: conservation of energy for the thermal field, conservation of mass for the hydraulic field, and conservation of momentum for the mechanical field. Physical processes such as heat conduction, phase change, thermal convection, fluid flow due to pore water pressure, elevation, thermal gradients, and force equilibrium based on effective stress theory are considered in this model. The model is then applied to simulate the thaw consolidation of permafrost. The simulation results show that excess pore water pressure is generated in the soil during thawing. The soil then experiences a time-dependent settlement following the dissipation of excess pore water pressure. The results prove that the THM model adequately captures the thaw consolidation process of permafrost.
引用
收藏
页码:190 / 201
页数:12
相关论文
共 50 条
  • [1] A fully coupled thermo-hydro-mechanical, three-dimensional model for hydraulic stimulation treatments
    Li, Sanbai
    Li, Xiang
    Zhang, Dongxiao
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2016, 34 : 64 - 84
  • [2] A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems
    Salimzadeh, Saeed
    Paluszny, Adriana
    Nick, Hamidreza M.
    Zimmerman, Robert W.
    GEOTHERMICS, 2018, 71 : 212 - 224
  • [3] Iteratively coupled mixed finite element solver for thermo-hydro-mechanical modeling of permafrost thaw
    Vohra, Naren
    Peszynska, Malgorzata
    RESULTS IN APPLIED MATHEMATICS, 2024, 22
  • [4] A fully coupled thermo-hydro-mechanical nonlinear model for a frozen medium
    Neaupane, KM
    Yamabe, T
    COMPUTERS AND GEOTECHNICS, 2001, 28 (08) : 613 - 637
  • [6] A fully coupled thermo-hydro-mechanical model for unsaturated porous media
    Weizhong ChenXianjun TanHongdan YuGuojun WuShanpo Jia State Key Laboratory of Geomechanics and Geotechnical EngineeringInstitute of Rock and Soil MechanicsChinese Academy of SciencesWuhanChina
    Journal of Rock Mechanics and Geotechnical Engineering, 2009, 1 (01) : 31 - 40
  • [7] A fully coupled thermo-hydro-mechanical model for unsaturated porous media
    Chen, Weizhong
    Tan, Xianjun
    Yu, Hongdan
    Wu, Guojun
    Jia, Shanpo
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2009, 1 (01) : 31 - 40
  • [8] A fully coupled thermo-hydro-mechanical elastoplastic damage model for fractured rock
    Nikolaos Reppas
    Yilin Gui
    Ben Wetenhall
    Colin T. Davie
    Jianjun Ma
    Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2024, 10
  • [9] A fully coupled constitutive model for thermo-hydro-mechanical behaviour of unsaturated soils
    Liu, Yi
    Cai, Guoqing
    Zhou, Annan
    Han, Bowen
    Li, Jian
    Zhao, Chengang
    COMPUTERS AND GEOTECHNICS, 2021, 133
  • [10] A fully coupled thermo-hydro-mechanical elastoplastic damage model for fractured rock
    Reppas, Nikolaos
    Gui, Yilin
    Wetenhall, Ben
    Davie, Colin T.
    Ma, Jianjun
    GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2024, 10 (01)