A Semismooth Newton-Type Method for the Nearest Doubly Stochastic Matrix Problem br

被引:0
作者
Hu, Hao [1 ,2 ]
Li, Xinxin [3 ]
Im, Haesol [2 ]
Wolkowicz, Henry [2 ]
机构
[1] Clemson Univ, Sch Math & Stat Sci, Clemson, SC 29634 USA
[2] Univ Waterloo, Dept Combinator & Optimizat, Fac Math, Waterloo, ON N2L 3G1, Canada
[3] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
nearest doubly stochastic matrix; semismooth Newton method; strongly semismooth; quadratic convergence; equivalence class;
D O I
10.1287/moor.2023.1382
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study a semismooth Newton-type method for the nearest doubly stochastic matrix problem where the nonsingularity of the Jacobian can fail. The optimality conditions for this problem are formulated as a system of strongly semismooth functions. We show that the nonsingularity of the Jacobian does not hold for this system. By exploiting the problem structure, we construct a modified two step semismooth Newton method that guarantees a nonsingular Jacobian matrix at each iteration, and that converges to the nearest doubly stochastic matrix quadratically.
引用
收藏
页码:729 / 751
页数:23
相关论文
共 58 条
[1]   Approximate and exact completion problems for Euclidean distance matrices using semidefinite programming [J].
Al-Homidan, S ;
Wolkowicz, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 406 :109-141
[2]   Computing the nearest doubly stochastic matrix with a prescribed entry [J].
Bai, Zheng-Jian ;
Chu, Delin ;
Tan, Roger C. E. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (02) :635-655
[3]   A semi-smooth Newton method for a special piecewise linear system with application to positively constrained convex quadratic programming [J].
Barrios, J. G. ;
Bello Cruz, J. Y. ;
Ferreira, O. P. ;
Nemeth, S. Z. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 301 :91-100
[4]  
BERTSIMAS D, 1997, INTRO LINEAR OPTIMIZ
[5]  
Best M. J., 2017, ADV APPL MATH
[6]   AN ALGORITHM FOR SOLVING QUADRATIC NETWORK FLOW PROBLEMS [J].
BOLAND, N ;
GOH, CJ ;
MEES, AI .
APPLIED MATHEMATICS LETTERS, 1991, 4 (04) :61-64
[7]   A SIMPLE CONSTRAINT QUALIFICATION IN INFINITE DIMENSIONAL PROGRAMMING [J].
BORWEIN, JM ;
WOLKOWICZ, H .
MATHEMATICAL PROGRAMMING, 1986, 35 (01) :83-96
[8]   PARTIALLY FINITE CONVEX-PROGRAMMING .1. QUASI RELATIVE INTERIORS AND DUALITY-THEORY [J].
BORWEIN, JM ;
LEWIS, AS .
MATHEMATICAL PROGRAMMING, 1992, 57 (01) :15-48
[9]  
Brualdi R.A., 1991, ENCY MATH ITS APPL, V39
[10]   SOME APPLICATIONS OF DOUBLY STOCHASTIC MATRICES [J].
BRUALDI, RA .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 107 :77-100