Hyers-Ulam stability for a class of Hadamard fractional Ito-Doob stochastic integral equations

被引:15
|
作者
Kahouli, Omar [1 ]
Makhlouf, Abdellatif Ben [2 ]
Mchiri, Lassaad [3 ]
Rguigui, Hafedh [4 ]
机构
[1] Univ Hail, Appl Coll, Dept Elect Engn, Hail 81481, Saudi Arabia
[2] Jouf Univ, Coll Sci, Dept Math, POB 2014, Sakaka, Saudi Arabia
[3] Univ Evry dVal Essonne, Fac Sci Sfax, Dept Math, Tunisia & ENSIIE, 1 Sq Resistance, F-91025 Evry Courcouronne, France
[4] Umm Al Qura Univ, Al Qunfudhah Univ Coll, Dept Math, Al Qunfudhah, Saudi Arabia
关键词
DIFFERENTIAL-EQUATIONS;
D O I
10.1016/j.chaos.2022.112918
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our goal in this work is to demonstrate the existence and uniqueness of the solution to a class of Hadamard Fractional Ito-Doob Stochastic integral equations (HFIDSIE) of order phi is an element of (0, 1) via the fixed point technique (FPT). Hyers-Ulam stability (HUS) is investigated for HFIDSIE according to the Gronwall inequality. Two theoretical examples are provided to illustrate our results.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses
    Zada, Akbar
    Ali, Wajid
    Farina, Syed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (15) : 5502 - 5514
  • [42] Hyers-Ulam Stability of Nonlinear Integral Equation
    Mortaza Gachpazan
    Omid Baghani
    Fixed Point Theory and Applications, 2010
  • [43] HYERS-ULAM STABILITY FOR GEGENBAUER DIFFERENTIAL EQUATIONS
    Jung, Soon-Mo
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [44] On Hyers-Ulam Stability of Monomial Functional Equations
    A. Gilányi
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1998, 68 : 321 - 328
  • [45] Hyers-Ulam Stability of Power Series Equations
    Bidkham, M.
    Mezerji, H. A. Soleiman
    Gordji, M. Eshaghi
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [46] HYERS-ULAM STABILITY OF TRIGONOMETRIC FUNCTIONAL EQUATIONS
    Chang, Jeongwook
    Chung, Jaeyoung
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 23 (04): : 567 - 575
  • [47] Hyers-Ulam Stability of Linear Differential Equations
    Murali, R.
    Selvan, A. Ponmana
    COMPUTATIONAL INTELLIGENCE, CYBER SECURITY AND COMPUTATIONAL MODELS: MODELS AND TECHNIQUES FOR INTELLIGENT SYSTEMS AND AUTOMATION, 2018, 844 : 183 - 192
  • [48] ON HYERS-ULAM STABILITY OF NONLINEAR DIFFERENTIAL EQUATIONS
    Huang, Jinghao H
    Jung, Soon-Mo
    Li, Yongjin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (02) : 685 - 697
  • [49] On Hyers-Ulam stability of monomial functional equations
    Gilanyi, A
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1998, 68 (1): : 321 - 328
  • [50] Hyers-Ulam stability of hypergeometric differential equations
    Abdollahpour, Mohammad Reza
    Rassias, Michael Th
    AEQUATIONES MATHEMATICAE, 2019, 93 (04) : 691 - 698