Hyers-Ulam stability for a class of Hadamard fractional Ito-Doob stochastic integral equations

被引:15
|
作者
Kahouli, Omar [1 ]
Makhlouf, Abdellatif Ben [2 ]
Mchiri, Lassaad [3 ]
Rguigui, Hafedh [4 ]
机构
[1] Univ Hail, Appl Coll, Dept Elect Engn, Hail 81481, Saudi Arabia
[2] Jouf Univ, Coll Sci, Dept Math, POB 2014, Sakaka, Saudi Arabia
[3] Univ Evry dVal Essonne, Fac Sci Sfax, Dept Math, Tunisia & ENSIIE, 1 Sq Resistance, F-91025 Evry Courcouronne, France
[4] Umm Al Qura Univ, Al Qunfudhah Univ Coll, Dept Math, Al Qunfudhah, Saudi Arabia
关键词
DIFFERENTIAL-EQUATIONS;
D O I
10.1016/j.chaos.2022.112918
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our goal in this work is to demonstrate the existence and uniqueness of the solution to a class of Hadamard Fractional Ito-Doob Stochastic integral equations (HFIDSIE) of order phi is an element of (0, 1) via the fixed point technique (FPT). Hyers-Ulam stability (HUS) is investigated for HFIDSIE according to the Gronwall inequality. Two theoretical examples are provided to illustrate our results.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Ulam-Hyers stability of fractional Ito-Doob stochastic differential equations
    Mchiri, Lassaad
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (13) : 13731 - 13740
  • [2] Hyers-Ulam stability of Hadamard fractional stochastic differential equations
    Ben Makhlouf, Abdellatif
    Mchiri, Lassaad
    Rhaima, Mohamed
    Sallay, Jihen
    FILOMAT, 2023, 37 (30) : 10219 - 10228
  • [3] Existence, uniqueness, and averaging principle for Hadamard Ito-Doob stochastic delay fractional integral equations
    Ben Makhlouf, Abdellatif
    Mchiri, Lassaad
    Mtiri, Foued
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (14) : 14814 - 14827
  • [4] HADAMARD ITO-DOOB STOCHASTIC FRACTIONAL ORDER SYSTEMS
    Ben Makhlouf, Abdellatif
    Mchiri, Lassaad
    Arfaoui, Hassen
    Dhahri, Slim
    El-Hady, El-Sayed
    Cherif, Bahri
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (08): : 2060 - 2074
  • [5] Hyers-Ulam and Hyers-Ulam-Rassias Stability of a Class of Hammerstein Integral Equations
    Castro, L. P.
    Simoes, A. M.
    ICNPAA 2016 WORLD CONGRESS: 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2017, 1798
  • [6] HYERS-ULAM STABILITY OF A CLASS OF FRACTIONAL LINEAR DIFFERENTIAL EQUATIONS
    Wang, Chun
    Xu, Tian-Zhou
    KODAI MATHEMATICAL JOURNAL, 2015, 38 (03) : 510 - 520
  • [7] Hyers-Ulam stability of impulsive integral equations
    Zada, Akbar
    Riaz, Usman
    Khan, Farhan Ullah
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2019, 12 (03): : 453 - 467
  • [8] HYERS-ULAM STABILITY OF FRACTIONAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH RANDOM IMPULSE
    Baleanu, Dumitru
    Kandasamy, Banupriya
    Kasinathan, Ramkumar
    Kasinathan, Ravikumar
    Sandrasekaran, Varshini
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (03): : 967 - 982
  • [9] HYERS-ULAM STABILITY OF FRACTIONAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH RANDOM IMPULSE
    Varshini, S.
    Banupriya, K.
    Ramkumar, K.
    Ravikumar, K.
    Baleanu, D.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2022, 91 (04): : 351 - 364
  • [10] On Hyers-Ulam stability for a class of functional equations
    Costanza Borelli
    aequationes mathematicae, 1997, 54 (1-2) : 74 - 86