On characterization of shock propagation and radiative preheating in x-ray driven high-density carbon foils

被引:1
作者
Mishra, Gaurav [1 ]
Ghosh, Karabi [1 ]
机构
[1] Bhabha Atom Res Ctr, Theoret Phys Sect, Mumbai 400085, India
关键词
EQUATION-OF-STATE; INERTIAL CONFINEMENT FUSION; PHYSICS BASIS; IGNITION; TEMPERATURE; HOT; IMPLOSIONS; BERYLLIUM; MODEL; CODE;
D O I
10.1063/5.0141980
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recently, much effort has been dedicated to the high-density carbon ablator coated fuel capsule in indirect drive inertial confinement fusion experiments due to its higher density compared to other ablators. By using detailed radiation hydrodynamic simulations over a broad range of drive and target parameters, a thorough analysis is performed on shock speed, shock breakout, and maximum preheating temperature in pure and tungsten doped high density carbon foils. The ablators are irradiated by a non-equilibrium x-ray temperature drive consisting of the usual Planckian plus an additionally imposed Gaussian distribution lying in the high frequency M-band region of the incident spectrum. All variables have shown a complex interdependence on strength of the drive, its spectral distribution, and the thickness of the target. Maximum preheating temperature, an important parameter in designing experiments, reduces up to 34% for thicker high-density carbon (HDC) foils, whereas a mere 0.44% doping of tungsten in pure HDC is able to reduce preheating up to 17% for extreme drive conditions. The results are explained on the basis of variation of average albedo/wall loss behavior in foils, an outcome of the interplay between total extinction coefficient and spectral intensity variation with photon energy. For a better understanding and comparison among different types of ablators, multi-parameter scaling relations are proposed for above-mentioned variables, which govern the dynamics of shock propagation and preheating phenomena in HDC based foils.
引用
收藏
页数:20
相关论文
共 86 条
  • [1] A C D, 2020, BARCTHPS1602020 BHAB
  • [2] Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment
    Abu-Shawareb, H.
    Acree, R.
    Adams, P.
    Adams, J.
    Addis, B.
    Aden, R.
    Adrian, P.
    Afeyan, B. B.
    Aggleton, M.
    Aghaian, L.
    Aguirre, A.
    Aikens, D.
    Akre, J.
    Albert, F.
    Albrecht, M.
    Albright, B. J.
    Albritton, J.
    Alcala, J.
    Alday, C., Jr.
    Alessi, D. A.
    Alexander, N.
    Alfonso, J.
    Alfonso, N.
    Alger, E.
    Ali, S. J.
    Ali, Z. A.
    Alley, W. E.
    Amala, P.
    Amendt, P. A.
    Amick, P.
    Ammula, S.
    Amorin, C.
    Ampleford, D. J.
    Anderson, R. W.
    Anklam, T.
    Antipa, N.
    Appelbe, B.
    Aracne-Ruddle, C.
    Araya, E.
    Arend, M.
    Arnold, P.
    Arnold, T.
    Asay, J.
    Atherton, L. J.
    Atkinson, D.
    Atkinson, R.
    Auerbach, J. M.
    Austin, B.
    Auyang, L.
    Awwal, A. S.
    [J]. PHYSICAL REVIEW LETTERS, 2022, 129 (07)
  • [3] Atzeni S., 2004, PHYINERTIAL FUSION, V125
  • [4] High-Performance Indirect-Drive Cryogenic Implosions at High Adiabat on the National Ignition Facility
    Baker, K. L.
    Thomas, C. A.
    Casey, D. T.
    Khan, S.
    Spears, B. K.
    Nora, R.
    Woods, T.
    Milovich, J. L.
    Berger, R. L.
    Strozzi, D.
    Clark, D.
    Hohenberger, M.
    Hurricane, O. A.
    Callahan, D. A.
    Landen, O. L.
    Bachmann, B.
    Benedetti, R.
    Bionta, R.
    Celliers, P. M.
    Fittinghoff, D.
    Goyon, C.
    Grim, G.
    Hatarik, R.
    Izumi, N.
    Johnson, M. Gatu
    Kyrala, G.
    Ma, T.
    Millot, M.
    Nagel, S. R.
    Pak, A.
    Patel, P. K.
    Turnbull, D.
    Volegov, P. L.
    Yeamans, C.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (13)
  • [5] SUPER-TRANSITION-ARRAYS - A MODEL FOR THE SPECTRAL-ANALYSIS OF HOT, DENSE-PLASMA
    BARSHALOM, A
    OREG, J
    GOLDSTEIN, WH
    SHVARTS, D
    ZIGLER, A
    [J]. PHYSICAL REVIEW A, 1989, 40 (06): : 3183 - 3193
  • [6] Multiphase equation of state for carbon addressing high pressures and temperatures
    Benedict, Lorin X.
    Driver, Kevin P.
    Hamel, Sebastien
    Militzer, Burkhard
    Qi, Tingting
    Correa, Alfredo A.
    Saul, A.
    Schwegler, Eric
    [J]. PHYSICAL REVIEW B, 2014, 89 (22)
  • [7] Diamond spheres for inertial confinement fusion
    Biener, J.
    Ho, D. D.
    Wild, C.
    Woerner, E.
    Biener, M. M.
    El-dasher, B. S.
    Hicks, D. G.
    Eggert, J. H.
    Celliers, P. M.
    Collins, G. W.
    Teslich, N. E., Jr.
    Kozioziemski, B. J.
    Haan, S. W.
    Hamza, A. V.
    [J]. NUCLEAR FUSION, 2009, 49 (11)
  • [8] Tungsten doped diamond shells for record neutron yield inertial confinement fusion experiments at the National Ignition Facility
    Braun, T.
    Kucheyev, S. O.
    Shin, S. J.
    Wang, Y. M.
    Ye, J.
    Teslich, N. E., Jr.
    Saw, C. K.
    Bober, D. B.
    Sedillo, E. M.
    Rice, N. G.
    Sequoia, K.
    Huang, H.
    Requieron, W.
    Nikroo, A.
    Ho, D. D.
    Haan, S. W.
    Hamza, A. V.
    Wild, C.
    Biener, J.
    [J]. NUCLEAR FUSION, 2023, 63 (01)
  • [9] Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators
    Clark, D. S.
    Kritcher, A. L.
    Yi, S. A.
    Zylstra, A. B.
    Haan, S. W.
    Weber, C. R.
    [J]. PHYSICS OF PLASMAS, 2018, 25 (03)
  • [10] Coe J. D., 2016, LAUR1626877 ALM NATL