Transformer-based deep reverse attention network for multi-sensory human activity recognition

被引:8
作者
Pramanik, Rishav [1 ]
Sikdar, Ritodeep [1 ]
Sarkar, Ram [1 ]
机构
[1] Jadavpur Univ, Dept Comp Sci & Engn, Kolkata 700032, West Bengal, India
关键词
Deep learning; Reverse attention; Human activity recognition; Time-series prediction; Sensor data; ENSEMBLE;
D O I
10.1016/j.engappai.2023.106150
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In today's era, one of the important applications of Artificial Intelligence (AI) is Human Activity Recognition (HAR). It has a wide range of applicability in health monitoring for patients with chronic diseases, gaming consoles for gesture recognition, etc. Sensor-based HAR systems use signals collected over a period of time to label an activity. When we design an efficient sensor-based HAR system, a model requires learning an optimal association of spatial and temporal features. In this article, we propose a sensor-based HAR technique using the deep learning approach. We present a deep reverse transformer-based attention mechanism to guide the side residual features Unlike the conventional bottom-up approaches for feature fusion, we exploit a top-down feature fusion approach. The reverse attention is self-calibrated throughout the course of learning, which regularizes the attention modules and dynamically adjusts the learning rate. The overall framework outperforms several state-of-the-art methods and is shown to be statistically significant against these methods on five publicly available sensor-based HAR datasets, namely, MHEALTH, USC-HAD, WHARF, UTD-MHAD1, and UTD-MHAD2. Further, we conduct an ablation study to showcase the importance of each of the components of the proposed framework. Source code of this work is available at https://github.com/rishavpramanik/ RevTransformerAttentionHAR.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A deep convolutional attention network based on RGB activity images for smart home activity recognition
    Song, Xinjing
    Wang, Yanjiang
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (11) : 8303 - 8311
  • [22] Multi-model weighted voting method based on convolutional neural network for human activity recognition
    Ouyang, Kangyue
    Pan, Zhongliang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (29) : 73305 - 73328
  • [23] DeepMatcher: A deep transformer-based network for robust and accurate local feature matching
    Xie, Tao
    Dai, Kun
    Wang, Ke
    Li, Ruifeng
    Zhao, Lijun
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [24] Human Activity Recognition Based on Gramian Angular Field and Deep Convolutional Neural Network
    Xu, Hongji
    Li, Juan
    Yuan, Hui
    Liu, Qiang
    Fan, Shidi
    Li, Tiankuo
    Sun, Xiaojie
    IEEE ACCESS, 2020, 8 (08): : 199393 - 199405
  • [25] Human Activity Recognition Using Deep Residual Convolutional Network Based on Wearable Sensors
    Yu, Xugao
    Al-qaness, Mohammed A. A.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (03) : 1950 - 1958
  • [26] PtychoDV: Vision Transformer-Based Deep Unrolling Network for Ptychographic Image Reconstruction
    Gan, Weijie
    Zhai, Qiuchen
    Mccann, Michael T.
    Cardona, Cristina Garcia
    Kamilov, Ulugbek S.
    Wohlberg, Brendt
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2024, 5 : 539 - 547
  • [27] Locational marginal price forecasting using Transformer-based deep learning network
    Liao, Shengyi
    Wang, Zhuo
    Luo, Yao
    Liang, Haiyan
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8457 - 8462
  • [28] Adaptive Transformer-Based Deep Learning Framework for Continuous Sign Language Recognition and Translation
    Said, Yahia
    Boubaker, Sahbi
    Altowaijri, Saleh M.
    Alsheikhy, Ahmed A.
    Atri, Mohamed
    MATHEMATICS, 2025, 13 (06)
  • [29] Attention induced multi-head convolutional neural network for human activity recognition
    Khan, Zanobya N.
    Ahmad, Jamil
    APPLIED SOFT COMPUTING, 2021, 110
  • [30] WISNet: A deep neural network based human activity recognition system
    Sharen, H.
    Anbarasi, L. Jani
    Rukmani, P.
    Gandomi, Amir H.
    Neeraja, R.
    Narendra, Modigari
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 258