DIMENSION OF INVARIANT MEASURES FOR AFFINE ITERATED FUNCTION SYSTEMS

被引:13
作者
Feng, De-Jun [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
LEDRAPPIER-YOUNG FORMULA; HAUSDORFF DIMENSION; EQUILIBRIUM STATES; EQUAL HAUSDORFF; ERGODIC-THEORY; SELF; ENTROPY; SETS; PROJECTIONS; CONTINUITY;
D O I
10.1215/00127094-2022-0014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {SiIi2 integral be a finite contracting affine iterated function system (IFS) on Rd. Let (E, a) denote the two-sided full shift over the alphabet A, and let n : E ! Rd be the coding map associated with the IFS. We prove that the projection of an ergodic a-invariant measure on E under n is always exact dimensional, and its Haus-dorff dimension satisfies a Ledrappier-Young-type formula. Furthermore, the result extends to average contracting affine IFSs. This completes several previous results and answers a folklore open question in the community of fractals. Some applications are given to the dimension of self-affine sets and measures.
引用
收藏
页码:701 / 774
页数:74
相关论文
共 50 条
[41]   Dimension and measures on sub-self-affine sets [J].
Kaenmaki, Antti ;
Vilppolainen, Markku .
MONATSHEFTE FUR MATHEMATIK, 2010, 161 (03) :271-293
[42]   ON THE DIMENSION OF SELF-AFFINE SETS AND MEASURES WITH OVERLAPS [J].
Barany, Balazs ;
Michalrams ;
Simon, Karoly .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (10) :4427-4440
[43]   Dimension and measures on sub-self-affine sets [J].
Antti Käenmäki ;
Markku Vilppolainen .
Monatshefte für Mathematik, 2010, 161 :271-293
[44]   A Conjecture on the Hausdorff Dimension of Attractors of Real Self-Projective Iterated Function Systems [J].
De Leo, Roberto .
EXPERIMENTAL MATHEMATICS, 2015, 24 (03) :270-288
[45]   Measures of Full Dimension on Self-Affine Graphs [J].
Olivier, Eric .
RECENT DEVELOPMENTS IN FRACTALS AND RELATED FIELDS, 2010, :295-308
[46]   Tiling iterated function systems [J].
Barnsley, Louisa F. ;
Barnsley, Michael F. ;
Vince, Andrew .
CHAOS SOLITONS & FRACTALS, 2024, 182
[47]   REVERSE ITERATED FUNCTION SYSTEM AND DIMENSION OF DISCRETE FRACTALS [J].
Deng, Qi-Rong .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 79 (01) :37-47
[48]   Large Deviation for Gibbs Probabilities at Zero Temperature and Invariant Idempotent Probabilities for Iterated Function Systems [J].
Mengue, Jairo K. ;
Oliveira, Elismar R. .
JOURNAL OF STATISTICAL PHYSICS, 2025, 192 (02)
[49]   Wavelets for iterated function systems [J].
Bohnstengel, Jana ;
Kesseboehmer, Marc .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (03) :583-601
[50]   Uniqueness of the measure with full dimension on sofic affine-invariant subsets of the 2-torus [J].
Olivier, Eric .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2010, 30 :1503-1528