Socioexposomics of COVID-19 across New Jersey: a comparison of geostatistical and machine learning approaches

被引:6
作者
Ren, Xiang [1 ,2 ,3 ]
Mi, Zhongyuan [1 ,4 ]
Georgopoulos, Panos G. [1 ,2 ,3 ,4 ]
机构
[1] Rutgers State Univ, Environm & Occupat Hlth Sci Inst EOHSI, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Dept Chem & Biochem Engn, Piscataway, NJ 08854 USA
[3] Rutgers Sch Publ Hlth, Dept Environm & Occupat Hlth & Justice, Piscataway, NJ 08854 USA
[4] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08901 USA
关键词
COVID-19; Social; environmental health disparities; Exposome and socioexposome; Explainable machine learning; Bayesian geospatial modeling; UNITED-STATES; EXPOSURES;
D O I
10.1038/s41370-023-00518-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Background: Disparities in adverse COVID-19 health outcomes have been associated with multiple social and environmental stressors. However, research is needed to evaluate the consistency and efficiency of methods for studying these associations at local scales.Objective To assess socioexposomic associations with COVID-19 outcomes across New Jersey and evaluate consistency of findings from multiple modeling approaches.Methods :We retrieved data for COVID-19 cases and deaths for the 565 municipalities of New Jersey up to the end of the first phase of the pandemic, and calculated mortality rates with and without long-term-care (LTC) facility deaths. We considered 84 spatially heterogeneous environmental, demographic and socioeconomic factors from publicly available databases, including air pollution, proximity to industrial sites/facilities, transportation-related noise, occupation and commuting, neighborhood and housing characteristics, age structure, racial/ethnic composition, poverty, etc. Six geostatistical models (Poisson/Negative-Binomial regression, Poison/Negative-Binomial mixed effect model, Poisson/Negative-Binomial Bersag-York-Mollie spatial model) and two Machine Learning (ML) methods (Random Forest, Extreme Gradient Boosting) were implemented to assess association patterns. The Shapley effects plot was established for explainable ML and change of support validation was introduced to compare performances of different approaches.Results: We found robust positive associations of COVID-19 mortality with historic exposures to NO2, population density, percentage of minority and below high school education, and other social and environmental factors. Exclusion of LTC deaths does not significantly affect correlations for most factors but findings can be substantially influenced by model structures and assumptions. The best performing geostatistical models involved flexible structures representing data variations. ML methods captured association patterns consistent with the best performing geostatistical models, and furthermore detected consistent nonlinear associations not captured by geostatistical models.Significance: The findings of this work improve the understanding of how social and environmental disparities impacted COVID-19 outcomes across New Jersey.
引用
收藏
页码:197 / 207
页数:11
相关论文
共 48 条
[1]   A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations [J].
Agier, Lydiane ;
Portengen, Lutzen ;
Chadeau-Hyam, Marc ;
Basagana, Xavier ;
Giorgis-Allemand, Lise ;
Siroux, Valerie ;
Robinson, Oliver ;
Vlaanderen, Jelle ;
Gonzalez, Juan R. ;
Nieuwenhuijsen, Mark J. ;
Vineis, Paolo ;
Vrijheid, Martine ;
Slama, Remy ;
Vermeulen, Roel .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2016, 124 (12) :1848-1856
[2]   Exposome-based public health interventions for infectious diseases in urban settings [J].
Andrianou, Xanthi D. ;
Pronk, Anjoeka ;
Galea, Karen S. ;
Stierum, Rob ;
Loh, Miranda ;
Riccardo, Flavia ;
Pezzotti, Patrizio ;
Makris, Konstantinos C. .
ENVIRONMENT INTERNATIONAL, 2021, 146
[3]   The COVID-19 pandemic and global environmental change: Emerging research needs [J].
Barouki, Robert ;
Kogevinas, Manolis ;
Audouze, Karine ;
Belesova, Kristine ;
Bergman, Ake ;
Birnbaum, Linda ;
Boekhold, Sandra ;
Denys, Sebastien ;
Desseille, Celine ;
Drakvik, Elina ;
Frumkin, Howard ;
Garric, Jeanne ;
Destoumieux-Garzon, Delphine ;
Haines, Andrew ;
Huss, Anke ;
Jensen, Genon ;
Karakitsios, Spyros ;
Klanova, Jana ;
Koskela, Iida-Maria ;
Laden, Francine ;
Marano, Francelyne ;
Matthies-Wiesler, Eva Franziska ;
Morris, George ;
Nowacki, Julia ;
Paloniemi, Riikka ;
Pearce, Neil ;
Peters, Annette ;
Rekola, Aino ;
Sarigiannis, Denis ;
Sebkova, Katerinaa ;
Slama, Remy ;
Staatsen, Brigit ;
Tonne, Cathryn ;
Vermeulen, Roel ;
Vineis, Paolo .
ENVIRONMENT INTERNATIONAL, 2021, 146
[4]   A systematic comparison of statistical methods to detect interactions in exposome-health associations [J].
Barrera-Gomez, Jose ;
Agier, Lydiane ;
Portengen, Lutzen ;
Chadeau-Hyam, Marc ;
Giorgis-Allemand, Lise ;
Siroux, Valerie ;
Robinson, Oliver ;
Vlaanderen, Jelle ;
Gonzalez, Juan R. ;
Nieuwenhuijsen, Mark ;
Vineis, Paolo ;
Vrijheid, Martine ;
Vermeulen, Roel ;
Slama, Remy ;
Basagana, Xavier .
ENVIRONMENTAL HEALTH, 2017, 16
[5]  
Bivand R, 2015, J STAT SOFTW, V63, P1
[6]  
Blangiardo M., 2015, Spatial and spatio-temporal Bayesian models with R-INLA, V1st, DOI [DOI 10.1002/9781118950203, 10.1002/9781118950203]
[7]   Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression [J].
Bobb, Jennifer F. ;
Henn, Birgit Claus ;
Valeri, Linda ;
Coull, Brent A. .
ENVIRONMENTAL HEALTH, 2018, 17
[8]   Ambient fine particulate matter air pollution and the risk of hospitalization among COVID-19 positive individuals: Cohort study [J].
Bowe, Benjamin ;
Xie, Yan ;
Gibson, Andrew K. ;
Cai, Miao ;
van Donkelaar, Aaron ;
Martin, Randall V. ;
Burnett, Richard ;
Al-Aly, Ziyad .
ENVIRONMENT INTERNATIONAL, 2021, 154
[9]   A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models [J].
Christodoulou, Evangelia ;
Ma, Jie ;
Collins, Gary S. ;
Steyerberg, Ewout W. ;
Verbakel, Jan Y. ;
Van Calster, Ben .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2019, 110 :12-22
[10]   Assessing NO2 Concentration and Model Uncertainty with High Spatiotemporal Resolution across the Contiguous United States Using Ensemble Model Averaging [J].
Di, Qian ;
Amini, Heresh ;
Shi, Liuhua ;
Kloog, Itai ;
Silvern, Rachel ;
Kelly, James ;
Sabath, M. Benjamin ;
Choirat, Christine ;
Koutrakis, Petros ;
Lyapustin, Alexei ;
Wang, Yujie ;
Mickley, Loretta J. ;
Schwartz, Joel .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (03) :1372-1384