Machine learning concepts applied to oral pathology and oral medicine: A convolutional neural networks' approach

被引:17
作者
Damaceno Araujo, Anna Luiza [1 ,2 ,3 ]
da Silva, Viviane Mariano [4 ]
Kudo, Maira Suzuka [4 ]
Carlos de Souza, Eduardo Santos [5 ]
Saldivia-Siracusa, Cristina [1 ]
Giraldo-Roldan, Daniela [1 ]
Lopes, Marcio Ajudarte [1 ]
Vargas, Pablo Agustin [1 ]
Khurram, Syed Ali [6 ]
Pearson, Alexander T. [7 ,8 ]
Kowalski, Luiz Paulo [2 ,3 ,9 ]
de Leon Ferreira de Carvalho, Andre Carlos Ponce [5 ]
Santos-Silva, Alan Roger [1 ]
Moraes, Matheus Cardoso [4 ]
机构
[1] Univ Campinas FOP UNICAMP, Piracicaba Dent Sch, Oral Diag Dept, Piracicaba, SP, Brazil
[2] Univ Sao Paulo, Head & Neck Surg Dept, Med Sch, Sao Paulo, SP, Brazil
[3] Univ Sao Paulo, LIM 28, Med Sch, Sao Paulo, SP, Brazil
[4] Fed Univ Sao Paulo ICT Unifesp, Inst Sci & Technol, Sao Jose Dos Campos, SP, Brazil
[5] Univ Sao Paulo ICMC USP, Inst Math & Comp Sci, Sao Carlos, SP, Brazil
[6] Univ Sheffield, Sch Clin Dent, Unit Oral & Maxillofacial Pathol, Sheffield, S Yorkshire, England
[7] Univ Chicago, Dept Med, Sect Hemathol Oncol, Chicago, IL USA
[8] Univ Chicago, Comprehens Canc Ctr, Chicago, IL 60637 USA
[9] AC Camargo Canc Ctr, Dept Head & Neck Surg & Otorhinolaryngol, Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
artificial intelligence; artificial neural network; deep learning; oral cancer; supervised learning; ARTIFICIAL-INTELLIGENCE; CLASSIFICATION; SEGMENTATION; IMAGES; TISSUE; TUMOR; HEAD;
D O I
10.1111/jop.13397
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
IntroductionArtificial intelligence models and networks can learn and process dense information in a short time, leading to an efficient, objective, and accurate clinical and histopathological analysis, which can be useful to improve treatment modalities and prognostic outcomes. This paper targets oral pathologists, oral medicinists, and head and neck surgeons to provide them with a theoretical and conceptual foundation of artificial intelligence-based diagnostic approaches, with a special focus on convolutional neural networks, the state-of-the-art in artificial intelligence and deep learning. MethodsThe authors conducted a literature review, and the convolutional neural network's conceptual foundations and functionality were illustrated based on a unique interdisciplinary point of view. ConclusionThe development of artificial intelligence-based models and computer vision methods for pattern recognition in clinical and histopathological image analysis of head and neck cancer has the potential to aid diagnosis and prognostic prediction.
引用
收藏
页码:109 / 118
页数:10
相关论文
共 40 条
  • [21] Maree Raphael, 2017, J Pathol Inform, V8, P19, DOI 10.4103/jpi.jpi_94_16
  • [22] A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY (REPRINTED FROM BULLETIN OF MATHEMATICAL BIOPHYSICS, VOL 5, PG 115-133, 1943)
    MCCULLOCH, WS
    PITTS, W
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 1990, 52 (1-2) : 99 - 115
  • [23] Localization of Diagnostically Relevant Regions of Interest in Whole Slide Images: a Comparative Study
    Mercan, Ezgi
    Aksoy, Selim
    Shapiro, Linda G.
    Weaver, Donald L.
    Brunye, Tad T.
    Elmore, Joann G.
    [J]. JOURNAL OF DIGITAL IMAGING, 2016, 29 (04) : 496 - 506
  • [24] Mikolajczyk A., 2018 INT INT PHD WOR, DOI 10.1109/IIPHDW.2018.8388338
  • [25] Convolutional Neural Network for Histopathological Analysis of Osteosarcoma
    Mishra, Rashika
    Daescu, Ovidiu
    Leavey, Patrick
    Rakheja, Dinesh
    Sengupta, Anita
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2018, 25 (03) : 313 - 325
  • [26] Cancer Diagnosis Using Deep Learning: A Bibliographic Review
    Munir, Khushboo
    Elahi, Hassan
    Ayub, Afsheen
    Frezza, Fabrizio
    Rizzi, Antonello
    [J]. CANCERS, 2019, 11 (09)
  • [27] Nirschl JJ, 2017, ELS MIC SOC BOOK SER, P179, DOI 10.1016/B978-0-12-810408-8.00011-0
  • [28] THE PERCEPTRON - A PROBABILISTIC MODEL FOR INFORMATION-STORAGE AND ORGANIZATION IN THE BRAIN
    ROSENBLATT, F
    [J]. PSYCHOLOGICAL REVIEW, 1958, 65 (06) : 386 - 408
  • [29] Quality control stress test for deep learning-based diagnostic model in digital pathology
    Schoemig-Markiefka, Birgid
    Pryalukhin, Alexey
    Hulla, Wolfgang
    Bychkov, Andrey
    Fukuoka, Junya
    Madabhushi, Anant
    Achter, Viktor
    Nieroda, Lech
    Buettner, Reinhard
    Quaas, Alexander
    Tolkach, Yuri
    [J]. MODERN PATHOLOGY, 2021, 34 (12) : 2098 - 2108
  • [30] A Novel Digital Score for Abundance of Tumour Infiltrating Lymphocytes Predicts Disease Free Survival in Oral Squamous Cell Carcinoma
    Shaban, Muhammad
    Khurram, Syed Ali
    Fraz, Muhammad Moazam
    Alsubaie, Najah
    Masood, Iqra
    Mushtaq, Sajid
    Hassan, Mariam
    Loya, Asif
    Rajpoot, Nasir M.
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)