Machine learning concepts applied to oral pathology and oral medicine: A convolutional neural networks' approach

被引:22
作者
Damaceno Araujo, Anna Luiza [1 ,2 ,3 ]
da Silva, Viviane Mariano [4 ]
Kudo, Maira Suzuka [4 ]
Carlos de Souza, Eduardo Santos [5 ]
Saldivia-Siracusa, Cristina [1 ]
Giraldo-Roldan, Daniela [1 ]
Lopes, Marcio Ajudarte [1 ]
Vargas, Pablo Agustin [1 ]
Khurram, Syed Ali [6 ]
Pearson, Alexander T. [7 ,8 ]
Kowalski, Luiz Paulo [2 ,3 ,9 ]
de Leon Ferreira de Carvalho, Andre Carlos Ponce [5 ]
Santos-Silva, Alan Roger [1 ]
Moraes, Matheus Cardoso [4 ]
机构
[1] Univ Campinas FOP UNICAMP, Piracicaba Dent Sch, Oral Diag Dept, Piracicaba, SP, Brazil
[2] Univ Sao Paulo, Head & Neck Surg Dept, Med Sch, Sao Paulo, SP, Brazil
[3] Univ Sao Paulo, LIM 28, Med Sch, Sao Paulo, SP, Brazil
[4] Fed Univ Sao Paulo ICT Unifesp, Inst Sci & Technol, Sao Jose Dos Campos, SP, Brazil
[5] Univ Sao Paulo ICMC USP, Inst Math & Comp Sci, Sao Carlos, SP, Brazil
[6] Univ Sheffield, Sch Clin Dent, Unit Oral & Maxillofacial Pathol, Sheffield, S Yorkshire, England
[7] Univ Chicago, Dept Med, Sect Hemathol Oncol, Chicago, IL USA
[8] Univ Chicago, Comprehens Canc Ctr, Chicago, IL 60637 USA
[9] AC Camargo Canc Ctr, Dept Head & Neck Surg & Otorhinolaryngol, Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
artificial intelligence; artificial neural network; deep learning; oral cancer; supervised learning; ARTIFICIAL-INTELLIGENCE; CLASSIFICATION; SEGMENTATION; IMAGES; TISSUE; TUMOR; HEAD;
D O I
10.1111/jop.13397
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
IntroductionArtificial intelligence models and networks can learn and process dense information in a short time, leading to an efficient, objective, and accurate clinical and histopathological analysis, which can be useful to improve treatment modalities and prognostic outcomes. This paper targets oral pathologists, oral medicinists, and head and neck surgeons to provide them with a theoretical and conceptual foundation of artificial intelligence-based diagnostic approaches, with a special focus on convolutional neural networks, the state-of-the-art in artificial intelligence and deep learning. MethodsThe authors conducted a literature review, and the convolutional neural network's conceptual foundations and functionality were illustrated based on a unique interdisciplinary point of view. ConclusionThe development of artificial intelligence-based models and computer vision methods for pattern recognition in clinical and histopathological image analysis of head and neck cancer has the potential to aid diagnosis and prognostic prediction.
引用
收藏
页码:109 / 118
页数:10
相关论文
共 40 条
[1]   Convolutional Neural Network-Based Clinical Predictors of Oral Dysplasia: Class Activation Map Analysis of Deep Learning Results [J].
Camalan, Seda ;
Mahmood, Hanya ;
Binol, Hamidullah ;
Araujo, Anna Luiza Damaceno ;
Santos-Silva, Alan Roger ;
Vargas, Pablo Agustin ;
Lopes, Marcio Ajudarte ;
Khurram, Syed Ali ;
Gurcan, Metin N. .
CANCERS, 2021, 13 (06) :1-18
[2]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[3]  
Faryna K, 2021, PR MACH LEARN RES, V143, P168
[4]   Uncertainty Driven Pooling Network for Microvessel Segmentation in Routine Histology Images [J].
Fraz, M. M. ;
Shaban, M. ;
Graham, S. ;
Khurram, S. A. ;
Rajpoot, N. M. .
COMPUTATIONAL PATHOLOGY AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2018, 11039 :156-164
[5]   A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: A retrospective study [J].
Fu, Qiuyun ;
Chen, Yehansen ;
Li, Zhihang ;
Jing, Qianyan ;
Hu, Chuanyu ;
Liu, Han ;
Bao, Jiahao ;
Hong, Yuming ;
Shi, Ting ;
Li, Kaixiong ;
Zou, Haixiao ;
Song, Yong ;
Wang, Hengkun ;
Wang, Xiqian ;
Wang, Yufan ;
Liu, Jianying ;
Liu, Hui ;
Chen, Sulin ;
Chen, Ruibin ;
Zhang, Man ;
Zhao, Jingjing ;
Xiang, Junbo ;
Liu, Bing ;
Jia, Jun ;
Wu, Hanjiang ;
Zhao, Yifang ;
Wan, Lin ;
Xiong, Xuepeng .
ECLINICALMEDICINE, 2020, 27
[6]  
Hart Steven N, 2019, J Pathol Inform, V10, P5, DOI 10.4103/jpi.jpi_32_18
[7]   First Experiences on Applying Deep Learning Techniques to Prostate Cancer Detection [J].
Jose Gomez-Hernandez, Eduardo ;
Manuel Garcia, Jose .
PARALLEL COMPUTING: TECHNOLOGY TRENDS, 2020, 36 :35-44
[8]   A novel lightweight deep convolutional neural network for early detection of oral cancer [J].
Jubair, Fahed ;
Al-karadsheh, Omar ;
Malamos, Dimitrios ;
Al Mahdi, Samara ;
Saad, Yusser ;
Hassona, Yazan .
ORAL DISEASES, 2022, 28 (04) :1123-1130
[9]   The application of artificial intelligence in the IMRT planning process for head and neck cancer [J].
Kearney, Vasant ;
Chan, Jason W. ;
Valdes, Gilmer ;
Solberg, Timothy D. ;
Yom, Sue S. .
ORAL ONCOLOGY, 2018, 87 :111-116
[10]   Machine Learning Methods for Histopathological Image Analysis [J].
Komura, Daisuke ;
Ishikawa, Shumpei .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2018, 16 :34-42