Hydrocephalus classification in brain computed tomography medical images using deep learning

被引:12
作者
Al Rub, Salsabeel Abu [1 ]
Alaiad, Ahmad [1 ]
Hmeidi, Ismail [1 ]
Quwaider, Muhannad [2 ]
Alzoubi, Omar [3 ]
机构
[1] Jordan Univ Sci & Technol, Fac Comp & Informat Technol, Dept Comp Informat Syst, Irbid, Jordan
[2] Jordan Univ Sci & Technol, Fac Comp & Informat Technol, Dept Comp Engn, Irbid, Jordan
[3] Jordan Univ Sci & Technol, Fac Comp & Informat Technol, Dept Comp Sci, Irbid, Jordan
关键词
Healthcare; Hydrocephalus; Big data analytics; Deep learning; Classification; Segmentation;
D O I
10.1016/j.simpat.2022.102705
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recent technological advancements, like big data analytics, is driving the growing adoption of cyber-physical systems and digital twins in the area of healthcare. Congenital hydrocephalus is one important example of recent healthcare data analytics. Congenital hydrocephalus is a buildup of excess cerebrospinal fluid (CSF) in the brain at birth. Congenital hydrocephalus can be lethal without treatment and represents an urgent issue in present-day clinical practice. Congenital hydrocephalus has a significant effect on a human entire life since it causes damage to the brain. It is important to accurately diagnose hydrocephalus early, which will help in the early treatment of the infant by a surgical procedure called ventriculoperitoneal (VP) shunt which will reduce the damage caused by hydrocephalus on the brain. Deep Learning is an evolving technology that is currently actively researched in the field of radiology. Compared to the traditional hydrocephalus diagnosing techniques, automatic diagnosing algorithms in deep learning can save diagnosis time, improve diagnosing accuracy, reduce cost, and reduce the radiologist's workload. In this paper, we have used a novel dataset collected from king Hussein medical center hospital in Jordan that consists of CT scans for hydrocephalus and non-hydrocephalus infants, the dataset has gone through multiple stages in preprocessing which are; cropping and filtering, normalization, seg-mentation (three segmentation techniques have been applied), and augmentation. These data have been used to build deep learning and machine learning models that will help physicians in the early and accurate diagnosing of congenital hydrocephalus which will lead to a decrease in the death rate and brain damage. The results of our models were impressive with a 98.5% ac-curacy for congenital hydrocephalus classification in infants' brain CT images.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Deep learning in denoising of micro-computed tomography images of rock samples
    Sidorenko, Mikhail
    Orlov, Denis
    Ebadi, Mohammad
    Koroteev, Dmitry
    COMPUTERS & GEOSCIENCES, 2021, 151
  • [32] Automatic pulmonary nodule detection on computed tomography images using novel deep learning
    Ghasemi, Shabnam
    Akbarpour, Shahin
    Farzan, Ali
    Jamali, Mohammad Ali Jabraeil
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 55147 - 55173
  • [33] Automatic pulmonary nodule detection on computed tomography images using novel deep learning
    Shabnam Ghasemi
    Shahin Akbarpour
    Ali Farzan
    Mohammad Ali Jabraeil Jamali
    Multimedia Tools and Applications, 2024, 83 : 55147 - 55173
  • [34] Classification of Plant Seedling Images Using Deep Learning
    Alimboyong, Catherine R.
    Hernandez, Alexander A.
    Medina, Ruji P.
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 1839 - 1844
  • [35] Computer-aided classification of lung nodules on computed tomography images via deep learning technique
    Hua, Kai-Lung
    Hsu, Che-Hao
    Hidayati, Hintami Chusnul
    Cheng, Wen-Huang
    Chen, Yu-Jen
    ONCOTARGETS AND THERAPY, 2015, 8 : 2015 - 2022
  • [36] Deep Convolutional Neural Network Based Analysis of Liver Tissues Using Computed Tomography Images
    Nisa, Mehrun
    Buzdar, Saeed Ahmad
    Khan, Khalil
    Ahmad, Muhammad Saeed
    SYMMETRY-BASEL, 2022, 14 (02):
  • [37] Detection and classification on MRI images of brain tumor using YOLO NAS deep learning model
    Mithun, M. S.
    Jawhar, S. Joseph
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2024, 17 (04)
  • [38] Modality Classification and Concept Detection in Medical Images using Deep Transfer Learning
    Singh, Sonit
    Ho-Shon, Kevin
    Karimi, Sarvnaz
    Hamey, Len
    2018 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2018,
  • [39] Classification of lung cancer computed tomography images using a 3-dimensional deep convolutional neural network with multi-layer filter
    Siddiqui, Ebtasam Ahmad
    Chaurasia, Vijayshri
    Shandilya, Madhu
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (13) : 11279 - 11294
  • [40] MRI brain tumor medical images analysis using deep learning techniques: a systematic review
    Al-Galal, Sabaa Ahmed Yahya
    Alshaikhli, Imad Fakhri Taha
    Abdulrazzaq, M. M.
    HEALTH AND TECHNOLOGY, 2021, 11 (02) : 267 - 282