Optimal Convergence Analysis of a Fully Discrete Scheme for the Stochastic Stokes-Darcy Equations

被引:2
作者
Xiang, Yahong [1 ,2 ]
Huang, Can [1 ,2 ]
Chen, Huangxin [1 ,2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performan, Xiamen 361005, Fujian, Peoples R China
关键词
Stochastic Stokes-Darcy equations; Multiplicative noise; Wiener process; Implicit scheme; Stability estimate; Convergence analysis; IPDG scheme; BOUNDARY-CONDITIONS; FLUID; DISCRETIZATIONS; INTERFACE; TRANSPORT; FLOW;
D O I
10.1007/s10915-022-02057-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider numerical analysis for a fully discrete scheme for the stochastic Stokes-Darcy equations with multiplicative noise. Implicit Euler scheme is used for the time discretization, and interior penalty discontinuous Galerkin (IPDG) scheme based on the BDM1-P0 finite element space is used for the space discretization. Physical interface conditions are imposed to couple the fluid equations in free fluid and porous media regions. It is proved that the implicit Euler scheme for the stochastic Stokes-Darcy equations is unconditionally stable. Under usual assumptions for the multiplicative noise and regularity of the velocity, we present the optimal convergence analysis in both time and space discretizations. Moreover, our stability result and error estimates for the velocity are independent of pressure. Numerical results are given to verify the theoretical analysis.
引用
收藏
页数:29
相关论文
共 40 条
[1]   Stochastic multiscale flux basis for Stokes-Darcy flows [J].
Ambartsumyan, Ilona ;
Khattatov, Eldar ;
Wang, ChangQing ;
Yotov, Ivan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 401
[2]  
[Anonymous], 2012, MATH 2 DIMENSIONAL T
[3]   A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium [J].
Arbogast, Todd ;
Brunson, Dana S. .
COMPUTATIONAL GEOSCIENCES, 2007, 11 (03) :207-218
[4]   Homogenization of a Darcy-Stokes system modeling vuggy porous media [J].
Arbogast, Todd ;
Lehr, Heather L. .
COMPUTATIONAL GEOSCIENCES, 2006, 10 (03) :291-302
[5]   BOUNDARY CONDITIONS AT A NATURALLY PERMEABLE WALL [J].
BEAVERS, GS ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1967, 30 :197-&
[6]  
Bejan A., 2006, Convection in Porous Media, Vthird
[7]   Convergence rates for the numerical approximation of the 2D stochastic Navier-Stokes equations [J].
Breit, Dominic ;
Dodgson, Alan .
NUMERISCHE MATHEMATIK, 2021, 147 (03) :553-578
[8]   New fully-mixed finite element methods for the Stokes-Darcy coupling [J].
Camano, Jessika ;
Gatica, Gabriel N. ;
Oyarzua, Ricardo ;
Ruiz-Baier, Ricardo ;
Venegas, Pablo .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 295 :362-395
[9]   FINITE ELEMENT APPROXIMATIONS FOR STOKES-DARCY FLOW WITH BEAVERS-JOSEPH INTERFACE CONDITIONS [J].
Cao, Yanzhao ;
Gunzburger, Max ;
Hu, Xiaolong ;
Hua, Fei ;
Wang, Xiaoming ;
Zhao, Weidong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) :4239-4256
[10]   TIME-SPLITTING METHODS TO SOLVE THE STOCHASTIC INCOMPRESSIBLE STOKES EQUATION [J].
Carelli, Erich ;
Hausenblas, Erika ;
Prohl, Andreas .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) :2917-2939