Three-dimensional imaging of integrated-circuit activity using quantum defects in diamond

被引:16
作者
Garsi, Marwa [1 ,2 ,3 ]
Stoehr, Rainer [1 ,2 ]
Denisenko, Andrej [3 ]
Shagieva, Farida [3 ]
Trautmann, Nils [4 ]
Vogl, Ulrich [4 ]
Sene, Badou [5 ]
Kaiser, Florian [1 ,2 ,6 ]
Zappe, Andrea [1 ,2 ]
Reuter, Rolf [1 ,2 ]
Wrachtrup, Joerg [1 ,2 ]
机构
[1] Univ Stuttgart, Inst Phys 3, IQST, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Res Ctr SCoPE, D-70569 Stuttgart, Germany
[3] TTI GmbH, Solid State Quantum Technol, D-70569 Stuttgart, Germany
[4] Carl Zeiss, Corp Res & Technol, Carl Zeiss Str 22, D-73447 Oberkochen, Germany
[5] Robert Bosch GmbH, Mobil Elect, D-72762 Reutlingen, Germany
[6] Luxembourg Inst Sci & Technol LIST, Esch Sur Alzette, Luxembourg
基金
欧洲研究理事会;
关键词
CURRENT-DENSITY; ALGORITHM; CENTERS;
D O I
10.1103/PhysRevApplied.21.014055
中图分类号
O59 [应用物理学];
学科分类号
摘要
The continuous scaling of semiconductor -based technologies to micrometer and submicrometer regimes has resulted in higher device density and lower power dissipation. Many physical phenomena such as selfheating or current leakage become significant at such scales, and mapping current densities to reveal these features is decisive for the development of modern electronics. However, advanced noninvasive technologies either offer low sensitivity or poor spatial resolution and are limited to two-dimensional spatial mapping. Here we use near -surface nitrogen -vacancy centers in diamond to probe Oersted fields created by current flowing within a multilayered integrated circuit in predevelopment. We show the reconstruction of the three-dimensional components of the current density with a magnitude down to about approximate to 10 mu A/mu m2 and submicrometer spatial resolution at room temperature. We also report the localization of currents in different layers and observe anomalous current flow in an electronic chip. Our method therefore provides a decisive step toward three-dimensional current mapping in technologically relevant nanoscale electronics chips.
引用
收藏
页数:10
相关论文
共 78 条
[1]   An integrated widefield probe for practical diamond nitrogen-vacancy microscopy [J].
Abrahams, G. J. ;
Scholten, S. C. ;
Healey, A. J. ;
Robertson, I. O. ;
Dontschuk, N. ;
Lim, S. Q. ;
Johnson, B. C. ;
Simpson, D. A. ;
Hollenberg, L. C. L. ;
Tetienne, J-P .
APPLIED PHYSICS LETTERS, 2021, 119 (25)
[2]   Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond [J].
Acosta, V. M. ;
Bauch, E. ;
Ledbetter, M. P. ;
Waxman, A. ;
Bouchard, L-S. ;
Budker, D. .
PHYSICAL REVIEW LETTERS, 2010, 104 (07)
[3]   Beyond the diffraction limit [J].
不详 .
NATURE PHOTONICS, 2009, 3 (07) :361-361
[4]   Nanoscale imaging magnetometry with diamond spins under ambient conditions [J].
Balasubramanian, Gopalakrishnan ;
Chan, I. Y. ;
Kolesov, Roman ;
Al-Hmoud, Mohannad ;
Tisler, Julia ;
Shin, Chang ;
Kim, Changdong ;
Wojcik, Aleksander ;
Hemmer, Philip R. ;
Krueger, Anke ;
Hanke, Tobias ;
Leitenstorfer, Alfred ;
Bratschitsch, Rudolf ;
Jelezko, Fedor ;
Wrachtrup, Joerg .
NATURE, 2008, 455 (7213) :648-U46
[5]   Low Temperature Studies of the Excited-State Structure of Negatively Charged Nitrogen-Vacancy Color Centers in Diamond [J].
Batalov, A. ;
Jacques, V. ;
Kaiser, F. ;
Siyushev, P. ;
Neumann, P. ;
Rogers, L. J. ;
McMurtrie, R. L. ;
Manson, N. B. ;
Jelezko, F. ;
Wrachtrup, J. .
PHYSICAL REVIEW LETTERS, 2009, 102 (19)
[6]   THE WORLDWIDE WEB [J].
BERNERSLEE, T ;
CAILLIAU, R ;
LUOTONEN, A ;
NIELSEN, HF ;
SECRET, A .
COMMUNICATIONS OF THE ACM, 1994, 37 (08) :76-&
[7]  
Bhargava P, 2019, SYMP VLSI CIRCUITS, pC262, DOI [10.23919/vlsic.2019.8778154, 10.23919/VLSIC.2019.8778154]
[8]   Leadless pacemakers: a contemporary review [J].
Bhatia, Neal ;
El-Chami, Mikhael .
JOURNAL OF GERIATRIC CARDIOLOGY, 2018, 15 (04) :249-253
[9]  
Böck J, 2015, IEEE BIPOL BICMOS, P121, DOI 10.1109/BCTM.2015.7340549
[10]   Improved Current Density and Magnetization Reconstruction Through Vector Magnetic Field Measurements [J].
Broadway, D. A. ;
Lillie, S. E. ;
Scholten, S. C. ;
Rohner, D. ;
Dontschuk, N. ;
Maletinsky, P. ;
Tetienne, J. -P. ;
Hollenberg, L. C. L. .
PHYSICAL REVIEW APPLIED, 2020, 14 (02)