Human organ chips for regenerative pharmacology

被引:5
作者
Goyal, Girija [1 ,6 ]
Belgur, Chaitra [1 ]
Ingber, Donald E. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Harvard Univ, Wyss Inst Biolog Inspired Engn, Boston, MA USA
[2] Harvard Med Sch, Vasc Biol Program, Boston, MA USA
[3] Boston Childrens Hosp, Dept Surg, Boston, MA USA
[4] Harvard Med Sch, Boston, MA USA
[5] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA USA
[6] Harvard Univ, Wyss Inst, CLSB5,3 Blackfan Circle, Boston, MA 02115 USA
来源
PHARMACOLOGY RESEARCH & PERSPECTIVES | 2024年 / 12卷 / 01期
关键词
clinical predictivity; intestine-on-a-chip; lung-on-a-chip; lymph Node-on-a-chip; microphysiological systems; organs on chips;
D O I
10.1002/prp2.1159
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Human organs-on-chips (organ chips) are small microfluidic devices that allow human cells to perform complex organ-level functions in vitro by recreating multi-cellular and multi-tissue structures and applying in vivo-like biomechanical cues. Human Organ Chips are being used for drug discovery and toxicology testing as an alternative to animal models which are ethically challenging and often do not predict clinical efficacy or toxicity. In this mini-review, we summarize our presentation that reviewed the state of the art relating to these microfluidic culture devices designed to mimic specific human organ structures and functions, and the application of Organ Chips to regenerative pharmacology. Human organs chips for regenerative pharmacology.image
引用
收藏
页数:5
相关论文
共 26 条
  • [21] Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies
    Park, Tae-Eun
    Mustafaoglu, Nur
    Herland, Anna
    Hasselkus, Ryan
    Mannix, Robert
    FitzGerald, Edward A.
    Prantil-Baun, Rachelle
    Watters, Alexander
    Henry, Olivier
    Benz, Maximilian
    Sanchez, Henry
    McCrea, Heather J.
    Goumnerova, Liliana Christova
    Song, Hannah W.
    Palecek, Sean P.
    Shusta, Eric
    Ingber, Donald E.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [22] Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip
    Plebani, Roberto
    Potla, Ratnakar
    Soong, Mercy
    Bai, Haiqing
    Izadifar, Zohreh
    Jiang, Amanda
    Travis, Renee N.
    Belgur, Chaitra
    Dinis, Alexandre
    Cartwright, Mark J.
    Prantil-Baun, Rachelle
    Jolly, Pawan
    Gilpin, Sarah E.
    Romano, Mario
    Ingber, Donald E.
    [J]. JOURNAL OF CYSTIC FIBROSIS, 2022, 21 (04) : 606 - 615
  • [23] Torisawa YS, 2016, TISSUE ENG PART C-ME, V22, P509, DOI [10.1089/ten.tec.2015.0507, 10.1089/ten.TEC.2015.0507]
  • [24] A molecular cell atlas of the human lung from single-cell RNA sequencing
    Travaglini, Kyle J.
    Nabhan, Ahmad N.
    Penland, Lolita
    Sinha, Rahul
    Gillich, Astrid
    Sit, Rene V.
    Chang, Stephen
    Conley, Stephanie D.
    Mori, Yasuo
    Seita, Jun
    Berry, Gerald J.
    Shrager, Joseph B.
    Metzger, Ross J.
    Kuo, Christin S.
    Neff, Norma
    Weissman, Irving L.
    Quake, Stephen R.
    Krasnow, Mark A.
    [J]. NATURE, 2020, 587 (7835) : 619 - 625
  • [25] Non-invasive sensing of transepithelial barrier function and tissue differentiation in organs-on-chips using impedance spectroscopy
    van der Helm, Marinke W.
    Henry, Olivier Y. F.
    Bein, Amir
    Hamkins-Indik, Tiama
    Cronce, Michael J.
    Leineweber, William D.
    Odijk, Mathieu
    van der Meer, Andries D.
    Eijkel, Jan C. T.
    Ingber, Donald E.
    van den Berg, Albert
    Segerink, Loes I.
    [J]. LAB ON A CHIP, 2019, 19 (03) : 452 - 463
  • [26] Development and Functions of Alveolar Macrophages
    Woo, Yeon Duk
    Jeong, Dongjin
    Chung, Doo Hyun
    [J]. MOLECULES AND CELLS, 2021, 44 (05) : 292 - 300