PREDICTION OF DEEP ICE LAYER THICKNESS USING ADAPTIVE RECURRENT GRAPH NEURAL NETWORKS

被引:0
|
作者
Zalatan, Benjamin [1 ]
Rahnemoonfar, Maryam [1 ,2 ]
机构
[1] Lehigh Univ, Dept Comp Sci & Engn, Bethlehem, PA 18015 USA
[2] Lehigh Univ, Dept Civil & Environm Engn, Bethlehem, PA 18015 USA
来源
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2023年
关键词
Deep learning; graph neural networks; recurrent neural networks; airborne radar; ice thickness;
D O I
10.1109/ICIP49359.2023.10222391
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As we deal with the effects of climate change and the increase of global atmospheric temperatures, the accurate tracking and prediction of ice layers within polar ice sheets grows in importance. Studying these ice layers reveals climate trends, how snowfall has changed over time, and the trajectory of future climate and precipitation. In this paper, we propose a machine learning model that uses adaptive, recurrent graph convolutional networks to, when given the amount of snow accumulation in recent years gathered through airborne radar data, predict historic snow accumulation by way of the thickness of deep ice layers. We found that our model performs better and with greater consistency than our previous model as well as equivalent non-temporal, non-geometric, and non-adaptive models.
引用
收藏
页码:2835 / 2839
页数:5
相关论文
共 50 条
  • [31] Land subsidence prediction using recurrent neural networks
    Sunil Kumar
    Dheeraj Kumar
    Praveen Kumar Donta
    Tarachand Amgoth
    Stochastic Environmental Research and Risk Assessment, 2022, 36 : 373 - 388
  • [32] A Hybrid Model for Soybean Yield Prediction Integrating Convolutional Neural Networks, Recurrent Neural Networks, and Graph Convolutional Networks
    Ingole, Vikram S.
    Kshirsagar, Ujwala A.
    Singh, Vikash
    Yadav, Manish Varun
    Krishna, Bipin
    Kumar, Roshan
    COMPUTATION, 2025, 13 (01)
  • [33] Gated Graph Recurrent Neural Networks
    Ruiz, Luana
    Gama, Fernando
    Ribeiro, Alejandro
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 6303 - 6318
  • [34] Fuzzy prediction architecture using recurrent neural networks
    Graves, Daniel
    Pedrycz, Witold
    NEUROCOMPUTING, 2009, 72 (7-9) : 1668 - 1678
  • [35] Spatio Temporal Modelling of Repeat Crimes and Hotspots Prediction Using Recurrent Deep Neural Networks
    Sundharakumar, K. B.
    Bhalaji, N.
    Palaniappan, Muthu M.
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [36] Deep Convolutional and Recurrent Neural Networks for Cell Motility Discrimination and Prediction
    Kimmel, Jacob C.
    Brack, Andrew S.
    Marshall, Wallace F.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (02) : 562 - 574
  • [37] Prediction of Road Traffic Flow Based on Deep Recurrent Neural Networks
    Bartlett, Zoe
    Han, Liangxiu
    Trung Thanh Nguyen
    Johnson, Princy
    2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 102 - 109
  • [38] Land subsidence prediction using recurrent neural networks
    Kumar, Sunil
    Kumar, Dheeraj
    Donta, Praveen Kumar
    Amgoth, Tarachand
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (02) : 373 - 388
  • [39] Pedestrian Trajectory Prediction Based on Tree Method using Graph Neural Networks
    Sighencea, Bogdan Ilie
    2022 24TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, SYNASC, 2022, : 245 - 249
  • [40] Learning Ice Accretion with Graph Neural Networks
    Shumilin, S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (10) : 2887 - 2892