Heterogeneous Basis Parameter Combination Method and Dynamic Transfer Strategy for Digital Predistortion of RF Power Amplifiers

被引:4
作者
Yang, Guichen [1 ]
Jiang, Chengye [1 ]
Han, Renlong [1 ]
Tan, Jingchao [1 ]
Zhang, Qianqian [1 ]
Liu, Falin [1 ]
机构
[1] Univ Sci & Technol China, Dept Elect Engn & Informat Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Digital predistortion (DPD); parameter identification; power amplifiers (PAs); principal component analysis; transfer learning; MODEL; COMPLEXITY;
D O I
10.1109/TMTT.2023.3315791
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To accomplish rapid adaptation of the digital predistortion (DPD) model, a low-complexity parameter extraction architecture is proposed in this article. The extracted DPD model coefficients are represented by a linear combination of the previous parameters (or pretrained parameters) in a novel basis parameter combination (BPC) method, thereby avoiding the extraction of high-dimensionality coefficients and significantly lowering the computational cost. Then, we developed a feature mapping technique (FMT) to coordinate the feature spaces corresponding to different DPD model structures, which facilitates the transfer learning of heterogeneous DPD model coefficients as the DPD model structure should be modified with the transmission configuration changes. Due to the good scalability of the proposed method, a dynamic transfer strategy (DTS) is presented to enhance the method's flexibility and avoid incremental complications by combining it with dimensionality reduction techniques. The experimental results demonstrate that the proposed method outperforms the state-of-the-art in terms of computational complexity, adaptability, and modeling precision.
引用
收藏
页码:2466 / 2476
页数:11
相关论文
共 32 条
[1]   Sparse Identification of Volterra Models for Power Amplifiers Without Pseudoinverse Computation [J].
Becerra, Juan A. ;
Ayora, Maria Jose Madero ;
Reina-Tosina, Javier ;
Crespo-Cadenas, Carlos .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2020, 68 (11) :4570-4578
[2]   Complexity Optimized Digital Predistortion Model of RF Power Amplifiers [J].
Cao, Wenhui ;
Wang, Siqi ;
Landin, Per N. ;
Fager, Christian ;
Eriksson, Thomas .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2022, 70 (03) :1490-1499
[3]   Iterative Learning Control for RF Power Amplifier Linearization [J].
Chani-Cahuana, Jessica ;
Landin, Per Niklas ;
Fager, Christian ;
Eriksson, Thomas .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2016, 64 (09) :2778-2789
[4]  
Cripps S. C., 2006, ARTECH MICR, V2nd
[5]   Beyond the Moore-Penrose Inverse: Strategies for the Estimation of Digital Predistortion Linearization Parameters [J].
Gilabert, Pere L. ;
Braithwaite, R. Neil ;
Montoro, Gabriel .
IEEE MICROWAVE MAGAZINE, 2020, 21 (12) :34-46
[6]   Green Communications [J].
Guan, Lei ;
Zhu, Anding .
IEEE MICROWAVE MAGAZINE, 2014, 15 (07) :84-99
[7]   A Spectrum-Sensing DPD Feedback Receiver With 30x Reduction in ADC Acquisition Bandwidth and Sample Rate [J].
Hammler, Nikolaus ;
Cathelin, Andreia ;
Cathelin, Philippe ;
Murmann, Boris .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (09) :3340-3351
[8]   Pruned Basis Space Search for Digital Predistortion of RF Power Amplifiers [J].
Han, Renlong ;
Jiang, Chengye ;
Yang, Guichen ;
Tan, Jingchao ;
Liu, Falin .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2023, 71 (07) :2946-2957
[9]   A Low Running Complexity Model for Digital Predistortion of RF Power Amplifiers [J].
Han, Renlong ;
Qiao, Wen ;
Jiang, Chengye ;
Su, Lei ;
Yang, Guichen ;
Tan, Jingchao ;
Liu, Falin .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2022, 32 (11) :1371-1374
[10]   Direct Error-Searching SPSA-Based Model Extraction for Digital Predistortion of RF Power mplifiers [J].
Kelly, Noel ;
Zhu, Anding .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2018, 66 (03) :1512-1523