An artificial intelligence-based model for prediction of atrial fibrillation from single-lead sinus rhythm electrocardiograms facilitating screening

被引:34
作者
Hygrell, Tove [1 ]
Viberg, Fredrik [1 ]
Dahlberg, Erik [2 ]
Charlton, Peter H. [3 ]
Gudmundsdottir, Katrin Kemp [1 ]
Mant, Jonathan [3 ]
Hornlund, Josef Lindman [2 ]
Svennberg, Emma [4 ]
机构
[1] Danderyd Hosp, Karolinska Inst, Dept Clin Sci, S-18288 Stockholm, Sweden
[2] Modulai AB, Stockholm, Sweden
[3] Univ Cambridge, Dept Publ Hlth & Primary Care, Primary Care Unit, Cambridge, England
[4] Karolinska Univ Hosp, Karolinska Inst, Dept Med, Huddinge, Stockholm, Sweden
来源
EUROPACE | 2023年 / 25卷 / 04期
基金
美国国家卫生研究院; 瑞典研究理事会;
关键词
Artificial intelligence; Atrial fibrillation; Screening; Intermittent ECG; NATRIURETIC PEPTIDE; STROKE; ECG;
D O I
10.1093/europace/euad036
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Screening for atrial fibrillation (AF) is recommended in the European Society of Cardiology guidelines. Yields of detection can be low due to the paroxysmal nature of the disease. Prolonged heart rhythm monitoring might be needed to increase yield but can be cumbersome and expensive. The aim of this study was to observe the accuracy of an artificial intelligence (AI)-based network to predict paroxysmal AF from a normal sinus rhythm single-lead ECG. Methods and results A convolutional neural network model was trained and evaluated using data from three AF screening studies. A total of 478 963 single-lead ECGs from 14 831 patients aged >= 65 years were included in the analysis. The training set included ECGs from 80% of participants in SAFER and STROKESTOP II. The remaining ECGs from 20% of participants in SAFER and STROKESTOP II together with all participants in STROKESTOP I were included in the test set. The accuracy was estimated using the area under the receiver operating characteristic curve (AUC). From a single timepoint ECG, the artificial intelligence-based algorithm predicted paroxysmal AF in the SAFER study with an AUC of 0.80 [confidence interval (CI) 0.78-0.83], which had a wide age range of 65-90+ years. Performance was lower in the age-homogenous groups in STROKESTOP I and STROKESTOP II (age range: 75-76 years), with AUCs of 0.62 (CI 0.61-0.64) and 0.62 (CI 0.58-0.65), respectively. Conclusion An artificial intelligence-enabled network has the ability to predict AF from a sinus rhythm single-lead ECG. Performance improves with a wider age distribution.
引用
收藏
页码:1332 / 1338
页数:7
相关论文
共 23 条
[1]   Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs [J].
Attia, Zachi, I ;
Friedman, Paul A. ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Kapa, Suraj .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2019, 12 (09)
[2]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[3]   Short-term ECG for out of hospital detection of silent atrial fibrillation episodes [J].
Doliwa, Peter Sobocinski ;
Frykman, Viveka ;
Rosenqvist, Marten .
SCANDINAVIAN CARDIOVASCULAR JOURNAL, 2009, 43 (03) :163-168
[4]   Stepwise mass screening for atrial fibrillation using N-terminal pro b-type natriuretic peptide: the STROKESTOP II study design [J].
Engdahl, Johan ;
Svennberg, Emma ;
Friberg, Leif ;
Al-Khalili, Faris ;
Frykman, Viveka ;
Gudmundsdottir, Katrin Kemp ;
Fredriksson, Tove ;
Rosenqvist, Marten .
EUROPACE, 2017, 19 (02) :297-302
[5]   Stepwise Screening of Atrial Fibrillation in a 75-Year-Old Population Implications for Stroke Prevention [J].
Engdahl, Johan ;
Andersson, Lisbeth ;
Mirskaya, Maria ;
Rosenqvist, Marten .
CIRCULATION, 2013, 127 (08) :930-937
[6]  
Filos D, 2011, IEEE ENG MED BIO, P953, DOI 10.1109/IEMBS.2011.6090215
[7]   Histological substrate of atrial biopsies in patients with lone atrial fibrillation [J].
Frustaci, A ;
Chimenti, C ;
Bellocci, F ;
Morgante, E ;
Russo, MA ;
Maseri, A .
CIRCULATION, 1997, 96 (04) :1180-1184
[8]   Factors predicting participation and potential yield of screening-detected disease among non-participants in a Swedish population-based atrial fibrillation screening study [J].
Gudmundsdottir, Katrin Kemp ;
Bonander, Carl ;
Hygrell, Tove ;
Svennberg, Emma ;
Frykman, Viveka ;
Stromberg, Ulf ;
Engdahl, Johan .
PREVENTIVE MEDICINE, 2022, 164
[9]   Stepwise mass screening for atrial fibrillation using N-terminal B-type natriuretic peptide: the STROKESTOP II study [J].
Gudmundsdottir, Katrin Kemp ;
Fredriksson, Tove ;
Svennberg, Emma ;
Al-Khalili, Faris ;
Friberg, Leif ;
Frykman, Viveka ;
Hijazi, Ziad ;
Rosenqvist, Marten ;
Engdahl, Johan .
EUROPACE, 2020, 22 (01) :24-32
[10]  
Hindricks G, 2021, EUR HEART J, V42, P546, DOI [10.1093/eurheartj/ehaa945, 10.1093/eurheartj/ehaa612]