Learning-based initialization for correntropy-based level sets to segment atherosclerotic plaque in ultrasound images

被引:5
作者
Qian, Chunjun [1 ,3 ]
Su, Enjie [2 ]
Ni, Xinye [1 ]
机构
[1] Nanjing Med Univ, Affiliated Changzhou Peoples Hosp 2, Changhzou 213004, Jiangsu, Peoples R China
[2] Chinese Med Hosp Wujin, Changzhou 213100, Jiangsu, Peoples R China
[3] Changzhou Inst Technol, Sch Elect & Informat Engn, Changzhou 213032, Jiangsu, Peoples R China
关键词
Atherosclerotic plaque; Segmentation; Learning-based initialization; Correntropy-based level sets; Ultrasound image; CAROTID-ARTERY; AUTOMATIC ALGORITHM; INTEGRATED-SYSTEM; PROGRESSION; THICKNESS; TRACKING; RISK;
D O I
10.1016/j.ultras.2022.106826
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Carotid artery atherosclerosis is a significant cause of stroke. Ultrasound imaging has been widely used in the diagnosis of atherosclerosis. Therefore, segmenting the atherosclerotic carotid plaque in an ultrasound image is an important task. Accurate plaque segmentation is helpful for the measurement of carotid plaque burden. This study proposes an automatic method for atherosclerotic plaque segmentation by using correntropy-based level sets (CLS) with learning-based initialization. We introduce the CLS model, containing the point-based local bias-field corrected image fitting method and correntropy-based distance measurement, to overcome the limitations of the ultrasound images. A supervised learning algorithm is employed to solve the automatic initialization problem of the variational methods. The proposed atherosclerotic plaque segmentation method is validated on 29 carotid ultrasound images, obtaining a Dice ratio of 90.6 +/- 1.9% and an overlap index of 83.6 +/- 3.2%. Moreover, by comparing the standard deviation of each evaluation index, it can be found that the proposed method is more robust for segmenting the atherosclerotic plaque. Our work shows that our proposed method can be more helpful than other variational models for measuring the carotid plaque burden.
引用
收藏
页数:16
相关论文
共 57 条
[1]  
Abdel-Dayem A. R., 2004, Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513), P1873, DOI 10.1109/CCECE.2004.1347574
[2]   Real-time extraction of carotid artery contours from ultrasound images [J].
Abolmaesumi, P ;
Sirouspour, MR ;
Salcudean, SE .
13TH IEEE SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS 2000), PROCEEDINGS, 2000, :181-186
[3]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[4]   FULLY AUTOMATED CAROTID PLAQUE SEGMENTATION IN COMBINED CONTRAST-ENHANCED AND B-MODE ULTRASOUND [J].
Akkus, Zeynettin ;
Carvalho, Diego D. B. ;
van den Oord, Stijn C. H. ;
Schinkel, Arend F. L. ;
Niessen, Wiro J. ;
de Jong, Nico ;
van der Steen, Antonius F. W. ;
Klein, Stefan ;
Bosch, Johan G. .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2015, 41 (02) :517-531
[5]   Two-stage artificial intelligence model for jointly measurement of atherosclerotic wall thickness and plaque burden in carotid ultrasound: A screening tool for cardiovascular/stroke risk assessment [J].
Biswas, Mainak ;
Saba, Luca ;
Chakrabartty, Shubhro ;
Khanna, Narender N. ;
Song, Hanjung ;
Suri, Harman S. ;
Sfikakis, Petros P. ;
Mavrogeni, Sophie ;
Viskovic, Klaudija ;
Laird, John R. ;
Cuadrado-Godia, Elisa ;
Nicolaides, Andrew ;
Sharma, Aditya ;
Viswanathan, Vijay ;
Protogerou, Athanasios ;
Kitas, George ;
Pareek, Gyan ;
Miner, Martin ;
Suri, Jasjit S. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 123
[6]   Secular Trends in Ischemic Stroke Subtypes and Stroke Risk Factors [J].
Bogiatzi, Chrysi ;
Hackam, Daniel G. ;
McLeod, A. Ian ;
Spence, J. David .
STROKE, 2014, 45 (11) :3208-3213
[7]   Automatic Algorithm for Segmentation of Atherosclerotic Carotid Plaque [J].
Bonanno, Lilla ;
Sottile, Fabrizio ;
Ciurleo, Rosella ;
Di Lorenzo, Giuseppe ;
Bruschetta, Daniele ;
Bramanti, Alessia ;
Ascenti, Giorgio ;
Bramanti, Placido ;
Marino, Silvia .
JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2017, 26 (02) :411-416
[8]   A review of image denoising algorithms, with a new one [J].
Buades, A ;
Coll, B ;
Morel, JM .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :490-530
[9]  
Buchanan D., 2012, MEDICAL IMAGING 2012, P1
[10]  
Cardinal MHR, 2003, LECT NOTES COMPUT SC, V2879, P432