Lattice strain-induced high-performance low-operating-voltage organic field-effect transistors by solution-sheared organic single crystal

被引:1
作者
Geng, Bowen [1 ,2 ,3 ]
Zhang, Feng [1 ,2 ,3 ]
Huang, Congcong [1 ,2 ,3 ]
He, Lihua [1 ,2 ,3 ]
Li, Chengtai [1 ,2 ,3 ]
Duan, Shuming [4 ,5 ]
Ren, Xiaochen [1 ,2 ,3 ]
Hu, Wenping [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Sci, Dept Chem, Minist Educ,Key Lab Organ Integrated Circuits, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Tianjin Key Lab Mol Optoelect Sci, Tianjin 300072, Peoples R China
[3] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[4] Joint Sch Natl Univ Singapore, Int Campus, Binhai New City 350207, Fuzhou, Peoples R China
[5] Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-K; SEMICONDUCTORS; POWER;
D O I
10.1039/d3tc04755e
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Organic single-crystal semiconductors, characterized by their well-ordered long-range structure, facilitate efficient charge carrier transmission, resulting in a notable improvement in the functionality of organic optoelectronic devices, as illustrated by organic field-effect transistors (OFETs). Nevertheless, the widespread utilization of OFETs, especially in low-voltage operations (<5 V), is impeded by their suboptimal electrical performance. This work employs lattice strain engineering to enhance OFET performance utilizing inch-sized single crystals of the organic semiconductor C-8-BTBT. By modulating the shear speed during the solution shearing process, lattice strain is induced in the C-8-BTBT crystals, leading to a reduction in pi-pi stacking distance and thinner crystals, thereby mitigating injection resistance and enhancing charge transport capabilities. The lattice-strained single crystals demonstrate a significant enhancement in mobility, reaching 8.7 cm(2) V-1 s(-1) at -3 V in low-voltage single-crystal OFETs, surpassing the highest values among similar molecules based on high-k dielectrics. Additionally, inch-scale organic single crystals display outstanding uniformity, with a 2.99% mobility coefficient of variation of 30 devices. This work underscores the potential of lattice strain engineering for large-scale, high-performance, low-power organic circuit applications, paving the way for the development of cost-effective and efficient electronic devices based on organic materials.
引用
收藏
页码:5012 / 5018
页数:7
相关论文
共 50 条
  • [31] Low-Voltage Organic Single-Crystal Field-Effect Transistor with Steep Subthreshold Slope
    Yang, Fangxu
    Sun, Lingjie
    Han, Jiangli
    Li, Baili
    Yu, Xi
    Zhang, Xiaotao
    Ren, Xiaochen
    Hu, Wenping
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (31) : 25871 - 25877
  • [32] Solution-Processable Organic Single Crystals with Bandlike Transport in Field-Effect Transistors
    Liu, Chuan
    Minari, Takeo
    Lu, Xubing
    Kumatani, Akichika
    Takimiya, Kazuo
    Tsukagoshi, Kazuhito
    ADVANCED MATERIALS, 2011, 23 (04) : 523 - +
  • [33] Development of High-performance n-Type Organic Field-effect Transistors Based on Nitrogen Heterocycles
    Yamashita, Yoshiro
    CHEMISTRY LETTERS, 2009, 38 (09) : 870 - 875
  • [34] High-performance organic field-effect transistors with dielectric and active layers printed sequentially by ultrasonic spraying
    Shao, Ming
    Das, Sanjib
    Xiao, Kai
    Chen, Jihua
    Keum, Jong K.
    Ivanov, Ilia N.
    Gu, Gong
    Durant, William
    Li, Dawen
    Geohegan, David B.
    JOURNAL OF MATERIALS CHEMISTRY C, 2013, 1 (28) : 4384 - 4390
  • [35] Fabrication of Two-Dimensional Crystalline Organic Films by Tilted Spin Coating for High-Performance Organic Field-Effect Transistors
    Dai, Fuhua
    Liu, Xuying
    Yang, Tengzhou
    Qian, Jun
    Li, Yun
    Gao, Yang
    Xiong, Pan
    Ou, Hai
    Wu, Jin
    Kanehara, Masayuki
    Minari, Takeo
    Liu, Chuan
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (07) : 7226 - 7234
  • [36] Low-Dimensional Arylacetylenes for Solution-Processable Organic Field-Effect Transistors
    Marrocchi, Assunta
    Seri, Mirko
    Kim, Choongik
    Facchetti, Antonio
    Taticchi, Aldo
    Marks, Tobin J.
    CHEMISTRY OF MATERIALS, 2009, 21 (13) : 2592 - 2594
  • [37] High performance ambipolar organic field-effect transistors based on indigo derivatives
    Pitayatanakul, Oratai
    Higashino, Toshiki
    Kadoya, Tomofumi
    Tanaka, Masaki
    Kojima, Hirotaka
    Ashizawa, Minoru
    Kawamoto, Tadashi
    Matsumoto, Hidetoshi
    Ishikawa, Ken
    Mori, Takehiko
    JOURNAL OF MATERIALS CHEMISTRY C, 2014, 2 (43) : 9311 - 9317
  • [38] Tuning the Crystal Polymorphs of Alkyl Thienoacene via Solution Self-Assembly Toward Air-Stable and High-Performance Organic Field-Effect Transistors
    He, Ping
    Tu, Zeyi
    Zhao, Guangyao
    Zhen, Yonggang
    Geng, Hua
    Yi, Yuanping
    Wang, Zongrui
    Zhang, Hantang
    Xu, Chunhui
    Liu, Jie
    Lu, Xiuqiang
    Fu, Xiaolong
    Zhao, Qiang
    Zhang, Xiaotao
    Ji, Deyang
    Jiang, Lang
    Dong, Huanli
    Hu, Wenping
    ADVANCED MATERIALS, 2015, 27 (05) : 825 - 830
  • [39] High-performance, low-voltage organic field-effect transistors using thieno[3,2-b]thiophene and benzothiadiazole co-polymers
    Amna, Bibi
    Isci, Recep
    Siddiqi, Humaira M.
    Majewski, Leszek A.
    Faraji, Sheida
    Ozturk, Turan
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (21) : 8254 - 8265
  • [40] Ambipolar organic field-effect transistors based on solution-processed single crystal microwires of a quinoidal oligothiophene derivative
    Ribierre, J. C.
    Zhao, L.
    Furukawa, S.
    Kikitsu, T.
    Inoue, D.
    Muranaka, A.
    Takaishi, K.
    Muto, T.
    Matsumoto, S.
    Hashizume, D.
    Uchiyama, M.
    Andre, P.
    Adachi, C.
    Aoyama, T.
    CHEMICAL COMMUNICATIONS, 2015, 51 (27) : 5836 - 5839