Switchable optical trapping based on vortex-pair beams generated by a polarization-multiplexed dielectric metasurface

被引:5
作者
Li, Hongliang [1 ,2 ]
Wen, Jisen [3 ]
Gao, Song [4 ]
Choi, Duk-Yong [5 ]
Kim, Jin Tae [6 ]
Lee, Sang-Shin [1 ,2 ]
机构
[1] Kwangwoon Univ, Dept Elect Engn, Seoul 01897, South Korea
[2] Kwangwoon Univ, Nano Device Applicat Ctr, Seoul 01897, South Korea
[3] Res Ctr Intelligent Chips & Devices, Zhejiang Lab, Hangzhou 311121, Peoples R China
[4] Univ Jinan, Sch Informat Sci & Engn, Shandong Prov Key Lab Network Based Intelligent Co, Jinan 250022, Shandong, Peoples R China
[5] Australian Natl Univ, Res Sch Phys, Dept Quantum Sci & Technol, Canberra, ACT 2601, Australia
[6] Elect & Telecommun Res Inst, Quantum Technol Res Dept, Daejeon 34129, South Korea
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Titanium dioxide - Topology - Vortex flow;
D O I
10.1039/d3nr04125e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Optical trapping is a state-of-the-art methodology that plays an integral role in manipulating and investigating microscopic objects but faces formidable challenges in multiparticle trapping, flexible manipulation, and high-integration applications. In this study, we propose and demonstrate a switchable optical scheme for trapping microparticles incorporating disparate vortex-pair beams generated by a polarization-multiplexed metasurface. The miniaturized all-dielectric metasurface, which comprises an array of titanium dioxide nanoposts, was manufactured and characterized to provide polarization-tuned two-fold vortex-pair beams. The profiles of the created vortices can be flexibly tailored by adjusting the combination of topological charges and the separation among phase singularities. Under transverse electric polarized light conditions, a vortex-pair beam with opposite topological charge combinations traps a single microparticle within one beam spot, while under transverse magnetic polarization conditions, two microparticles are captured simultaneously by a vortex-pair beam with the same topological charge signs. The proposed switchable trapping scheme (incorporating a vortex-pair light beam) is expected to feature enhanced integration and flexible manipulation of multiple particles with potential applications in biophysics, nanotechnology, and photonics.
引用
收藏
页码:17364 / 17372
页数:10
相关论文
共 42 条
[1]   Advances and applications of nanophotonic biosensors [J].
Altug, Hatice ;
Oh, Sang-Hyun ;
Maier, Stefan A. ;
Homola, Jiri .
NATURE NANOTECHNOLOGY, 2022, 17 (01) :5-16
[2]   ACCELERATION AND TRAPPING OF PARTICLES BY RADIATION PRESSURE [J].
ASHKIN, A .
PHYSICAL REVIEW LETTERS, 1970, 24 (04) :156-&
[3]   Strategies for Optical Trapping in Biological Samples: Aiming at Microrobotic Surgeons [J].
Bunea, Ada-Ioana ;
Gluckstad, Jesper .
LASER & PHOTONICS REVIEWS, 2019, 13 (04)
[4]   Optical tweezers in single-molecule biophysics [J].
Bustamante, Carlos J. ;
Chemla, Yann R. ;
Liu, Shixin ;
Wang, Michelle D. .
NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01)
[5]   All-dielectric silicon metalens for two-dimensiona particle manipulation in optical tweezers [J].
Chantakit, Teanchai ;
Schlickriede, Christian ;
Sain, Basudeb ;
Meyer, Fabian ;
Weiss, Thomas ;
Chattham, Nattaporn ;
Zentgraf, Thomas .
PHOTONICS RESEARCH, 2020, 8 (09) :1435-1440
[6]   Optical vortices during a superresolution process in a metamaterial [J].
D'Aguanno, G. ;
Mattiucci, N. ;
Bloemer, M. ;
Desyatnikov, A. .
PHYSICAL REVIEW A, 2008, 77 (04)
[7]   Structured light [J].
Forbes, Andrew ;
de Oliveira, Michael ;
Dennis, Mark R. .
NATURE PHOTONICS, 2021, 15 (04) :253-262
[8]   Measuring phase and polarization singularities of light using spin-multiplexing metasurfaces [J].
Fu, Yanan ;
Min, Changjun ;
Yu, Jiahao ;
Xie, Zhenwei ;
Si, Guangyuan ;
Wang, Xianyou ;
Zhang, Yuquan ;
Lei, Ting ;
Lin, Jiao ;
Wang, Dapeng ;
Urbach, H. P. ;
Yuan, Xiaocong .
NANOSCALE, 2019, 11 (39) :18303-18310
[9]   All- dielectric metasurfaces for simultaneously realizing polarization rotation and wavefront shaping of visible light [J].
Gao, Song ;
Park, Chul-Soon ;
Lee, Sang-Shin ;
Choi, Duk-Yong .
NANOSCALE, 2019, 11 (09) :4083-4090
[10]  
Geromel R., 2023, LIQ CRYST, V50, P1