Navigating the Dynamic Noise Landscape of Variational Quantum Algorithms with QISMET

被引:9
作者
Ravi, Gokul Subramanian [1 ]
Smith, Kaitlin [1 ]
Baker, Jonathan M. [1 ]
Kannan, Tejas [1 ]
Earnest, Nathan [2 ]
Javadi-Abhari, Ali [2 ]
Hoffmann, Henry [1 ]
Chong, Frederic T. [1 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] IBM Quantum, Yorktown Hts, NY USA
来源
PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, VOL 2, ASPLOS 2023 | 2023年
基金
美国国家科学基金会;
关键词
quantum computing; variational quantum algorithms; error mitigation; transient error; superconducting qubits; noisy intermediatescale quantum; variational quantum eigensolver;
D O I
10.1145/3575693.3575739
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the Noisy Intermediate Scale Quantum (NISQ) era, the dynamic nature of quantum systems causes noise sources to constantly vary over time. Transient errors from the dynamic NISQ noise landscape are challenging to comprehend and are especially detrimental to classes of applications that are iterative and/or long-running, and therefore their timely mitigation is important for quantum advantage in real-world applications. The most popular examples of iterative long-running quantum applications are variational quantum algorithms (VQAs). Iteratively, VQA's classical optimizer evaluates circuit candidates on an objective function and picks the best circuits towards achieving the application's target. Noise fluctuation can cause a significant transient impact on the objective function estimation of the VQA iterations' tuning candidates. This can severely affect VQA tuning and, by extension, its accuracy and convergence. This paper proposes QISMET: Quantum Iteration Skipping to Mitigate Error Transients, to navigate the dynamic noise landscape of VQAs. QISMET actively avoids instances of high fluctuating noise which are predicted to have a significant transient error impact on specific VQA iterations. To achieve this, QISMET estimates transient error in VQA iterations and designs a controller to keep the VQA tuning faithful to the transient-free scenario. By doing so, QISMET efficiently mitigates a large portion of the transient noise impact on VQAs and is able to improve the fidelity by 1.3x-3x over a traditional VQA baseline, with 1.6-2.4x improvement over alternative approaches, across different applications and machines.
引用
收藏
页码:515 / 529
页数:15
相关论文
共 44 条
[1]  
Abraham Hector, 2019, Qiskit: An Open-source Framework for Quantum Computing, DOI [10.5281/zenudo 2562110, DOI 10.5281/ZENUDO2562110]
[2]  
[Anonymous], 2021, IBM Quantum Systems
[3]  
[Anonymous], 2021, SPSA: Simultaneous Perturbation Stochastic Approximation method
[4]  
[Anonymous], 2021, IBM Quantum SU2 ansatz
[5]  
[Anonymous], 2021, IBM Quantum RA ansatz
[6]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[7]   Dynamical decoupling sequence construction as a filter-design problem [J].
Biercuk, M. J. ;
Doherty, A. C. ;
Uys, H. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (15)
[8]   Mitigating measurement errors in multiqubit experiments [J].
Bravyi, Sergey ;
Sheldon, Sarah ;
Kandala, Abhinav ;
Mckay, David C. ;
Gambetta, Jay M. .
PHYSICAL REVIEW A, 2021, 103 (04)
[9]   Decoherence benchmarking of superconducting qubits [J].
Burnett, Jonathan J. ;
Bengtsson, Andreas ;
Scigliuzzo, Marco ;
Niepce, David ;
Kudra, Marina ;
Delsing, Per ;
Bylander, Jonas .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[10]  
Ding YS, 2020, Arxiv, DOI arXiv:2008.09503