Dynamic behavior of stochastic prostate cancer system with comprehensive therapy under regime switching

被引:7
作者
Yang, Huan [1 ]
Tan, Yuanshun [1 ]
Yang, Jin [1 ]
机构
[1] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing 400074, Peoples R China
基金
中国国家自然科学基金;
关键词
Prostate cancer; Gaussian white noise; Regime switching; Extinction-persistence behavior; Stationary distribution; TUMOR-IMMUNE MODEL; INTERMITTENT ANDROGEN SUPPRESSION; STATIONARY DISTRIBUTION; MATHEMATICAL-MODEL; POPULATION-MODEL; EXTINCTION; ERGODICITY; PHYTOPLANKTON; IMMUNOTHERAPY; DEPRIVATION;
D O I
10.1016/j.apm.2022.09.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The random volatility, including continuous perturbation and regime switching, inevitably occurs in tumor microenvironment. In this paper, by introducing Gaussian white noise and regime switching, the combination of the two environmental disturbances is consid-ered in the prostate cancer (PCa) model with comprehensive treatment. The Ito's formula, Lyapunov function method and ergodicity of Markov chain are employed to research the extinction-persistence behavior of PCa cells and the existence of a unique ergodic station-ary distribution. Our results show high-intensity Gaussian white noise type of continuous perturbation can suppress PCa development and that when the regime switching is on, patients can obtain a good quality of life and improve the survival rate by improving im-munity and then maintaining in such high-intensity noise state for a long time.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:398 / 415
页数:18
相关论文
共 57 条
[1]   Competitive Lotka-Volterra population dynamics with jumps [J].
Bao, Jianhai ;
Mao, Xuerong ;
Yin, Geroge ;
Yuan, Chenggui .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :6601-6616
[2]   Depression in men with prostate cancer [J].
Bennett, G ;
Badger, TA .
ONCOLOGY NURSING FORUM, 2005, 32 (03) :545-556
[3]   Bounded-noise-induced transitions in a tumor-immune system interplay [J].
d'Onofrio, Alberto .
PHYSICAL REVIEW E, 2010, 81 (02)
[4]   Analysis of a stochastic tumor-immune model with regime switching and impulsive perturbations [J].
Deng, Ying ;
Liu, Meng .
APPLIED MATHEMATICAL MODELLING, 2020, 78 :482-504
[5]  
Gregory CW, 2001, CANCER RES, V61, P2892
[6]   Quality of life and fear of disease progression are associated with aspects of health literacy in men with prostate cancer from Germany [J].
Haack, Marius ;
Kramer, Silke ;
Seidel, Gabriele ;
Dierks, Marie-Luise .
SUPPORTIVE CARE IN CANCER, 2020, 28 (05) :2283-2292
[7]   An algorithmic introduction to numerical simulation of stochastic differential equations [J].
Higham, DJ .
SIAM REVIEW, 2001, 43 (03) :525-546
[8]   A Mathematical Model of Intermittent Androgen Suppression for Prostate Cancer [J].
Ideta, Aiko Miyamura ;
Tanaka, Gouhei ;
Takeuchi, Takumi ;
Aihara, Kazuyuki .
JOURNAL OF NONLINEAR SCIENCE, 2008, 18 (06) :593-614
[9]  
Jackson TL, 2004, DISCRETE CONT DYN-B, V4, P187
[10]   Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. [J].
Kantoff, Philip W. ;
Higano, Celestia S. ;
Shore, Neal D. ;
Berger, E. Roy ;
Small, Eric J. ;
Penson, David F. ;
Redfern, Charles H. ;
Ferrari, Anna C. ;
Dreicer, Robert ;
Sims, Robert B. ;
Xu, Yi ;
Frohlich, Mark W. ;
Schellhammer, Paul F. ;
Ahmed, T. ;
Amin, A. ;
Arseneau, J. ;
Barth, N. ;
Bernstein, G. ;
Bracken, B. ;
Burch, P. ;
Caggiano, V. ;
Chin, J. ;
Chodak, G. ;
Chu, F. ;
Corman, J. ;
Curti, B. ;
Dawson, N. ;
Deeken, J. F. ;
Dubernet, T. ;
Fishman, M. ;
Flanigan, R. ;
Gailani, F. ;
Garbo, L. ;
Gardner, T. ;
Gelmann, E. ;
George, D. ;
Godfrey, T. ;
Gomella, L. ;
Guerra, M. ;
Hall, S. ;
Hanson, J. ;
Israeli, R. ;
Jancis, E. ;
Jewett, M. A. S. ;
Kassabian, V. ;
Katz, J. ;
Klotz, L. ;
Koeneman, K. ;
Koh, H. ;
Kratzke, R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 363 (05) :411-422