Adding α,α-disubstituted and β-linked monomers to the genetic code of an organism

被引:41
作者
Dunkelmann, Daniel L. [1 ]
Piedrafita, Carlos [1 ]
Dickson, Alexandre [1 ]
Liu, Kim C. [1 ]
Elliott, Thomas S. [1 ]
Fiedler, Marc [1 ]
Bellini, Dom [1 ]
Zhou, Andrew [1 ]
Cervettini, Daniele [1 ]
Chin, Jason W. [1 ]
机构
[1] Med Res Council Lab Mol Biol, Cambridge, England
基金
英国医学研究理事会;
关键词
AMINO-ACID; ESCHERICHIA-COLI; TU MUTANTS; EF-TU; BIOSYNTHESIS; PEPTIDE; EFFICIENCY; TRANSLATION; ELONGATION; EVOLUTION;
D O I
10.1038/s41586-023-06897-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The genetic code of living cells has been reprogrammed to enable the site-specific incorporation of hundreds of non-canonical amino acids into proteins, and the encoded synthesis of non-canonical polymers and macrocyclic peptides and depsipeptides1-3. Current methods for engineering orthogonal aminoacyl-tRNA synthetases to acylate new monomers, as required for the expansion and reprogramming of the genetic code, rely on translational readouts and therefore require the monomers to be ribosomal substrates4-6. Orthogonal synthetases cannot be evolved to acylate orthogonal tRNAs with non-canonical monomers (ncMs) that are poor ribosomal substrates, and ribosomes cannot be evolved to polymerize ncMs that cannot be acylated onto orthogonal tRNAs-this co-dependence creates an evolutionary deadlock that has essentially restricted the scope of translation in living cells to alpha-l-amino acids and closely related hydroxy acids. Here we break this deadlock by developing tRNA display, which enables direct, rapid and scalable selection for orthogonal synthetases that selectively acylate their cognate orthogonal tRNAs with ncMs in Escherichia coli, independent of whether the ncMs are ribosomal substrates. Using tRNA display, we directly select orthogonal synthetases that specifically acylate their cognate orthogonal tRNA with eight non-canonical amino acids and eight ncMs, including several beta-amino acids, alpha,alpha-disubstituted-amino acids and beta-hydroxy acids. We build on these advances to demonstrate the genetically encoded, site-specific cellular incorporation of beta-amino acids and alpha,alpha-disubstituted amino acids into a protein, and thereby expand the chemical scope of the genetic code to new classes of monomers. tRNA display enables the direct selection of orthogonal aminoacyl-tRNA synthetases that acylate orthogonal tRNAs with non-canonical monomers, enabling in vivo synthesis of proteins that include these monomers and expanding the repertoire of the genetic code.
引用
收藏
页码:603 / 610
页数:28
相关论文
共 66 条
[1]   Outwitting EF-Tu and the ribosome: translation with D-amino acids [J].
Achenbach, John ;
Jahnz, Michael ;
Bethge, Lucas ;
Paal, Krisztina ;
Jung, Maria ;
Schuster, Maja ;
Albrecht, Renate ;
Jarosch, Florian ;
Nierhaus, Knud H. ;
Klussmann, Sven .
NUCLEIC ACIDS RESEARCH, 2015, 43 (12) :5687-5698
[2]   Pyrrolysine is not hardwired for cotranslational insertion at UAG codons [J].
Ambrogelly, Alexandre ;
Gundllapalli, Sarath ;
Herring, Stephanie ;
Polycarpo, Carla ;
Frauer, Carina ;
Soll, Dieter .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (09) :3141-3146
[3]   Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature [J].
Arnison, Paul G. ;
Bibb, Mervyn J. ;
Bierbaum, Gabriele ;
Bowers, Albert A. ;
Bugni, Tim S. ;
Bulaj, Grzegorz ;
Camarero, Julio A. ;
Campopiano, Dominic J. ;
Challis, Gregory L. ;
Clardy, Jon ;
Cotter, Paul D. ;
Craik, David J. ;
Dawson, Michael ;
Dittmann, Elke ;
Donadio, Stefano ;
Dorrestein, Pieter C. ;
Entian, Karl-Dieter ;
Fischbach, Michael A. ;
Garavelli, John S. ;
Goeransson, Ulf ;
Gruber, Christian W. ;
Haft, Daniel H. ;
Hemscheidt, Thomas K. ;
Hertweck, Christian ;
Hill, Colin ;
Horswill, Alexander R. ;
Jaspars, Marcel ;
Kelly, Wendy L. ;
Klinman, Judith P. ;
Kuipers, Oscar P. ;
Link, A. James ;
Liu, Wen ;
Marahiel, Mohamed A. ;
Mitchell, Douglas A. ;
Moll, Gert N. ;
Moore, Bradley S. ;
Mueller, Rolf ;
Nair, Satish K. ;
Nes, Ingolf F. ;
Norris, Gillian E. ;
Olivera, Baldomero M. ;
Onaka, Hiroyasu ;
Patchett, Mark L. ;
Piel, Joern ;
Reaney, Martin J. T. ;
Rebuffat, Sylvie ;
Ross, R. Paul ;
Sahl, Hans-Georg ;
Schmidt, Eric W. ;
Selsted, Michael E. .
NATURAL PRODUCT REPORTS, 2013, 30 (01) :108-160
[4]   STRUCTURE-ACTIVITY-RELATIONSHIPS IN THE ESTERASE-CATALYZED HYDROLYSIS AND TRANSESTERIFICATION OF ESTERS AND LACTONES [J].
BARTON, P ;
LAWS, AP ;
PAGE, MI .
JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, 1994, (09) :2021-2029
[5]  
BRUBAKER LH, 1963, BIOCHIM BIOPHYS ACTA, V76, P48
[6]  
Camarero J A, 2001, Curr Protoc Protein Sci, VChapter 18, DOI 10.1002/0471140864.ps1804s15
[7]   Rapid discovery and evolution of orthogonal aminoacyl-tRNA synthetase-tRNA pairs [J].
Cervettini, Daniele ;
Tang, Shan ;
Fried, Stephen D. ;
Willis, Julian C. W. ;
Funke, Louise F. H. ;
Colwell, Lucy J. ;
Chin, Jason W. .
NATURE BIOTECHNOLOGY, 2020, 38 (08) :989-+
[8]   Context effects of genetic code expansion by stop codon suppression [J].
Chemla, Yonatan ;
Ozer, Eden ;
Algov, Itay ;
Alfonta, Lital .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2018, 46 :146-155
[9]   MolProbity: all-atom structure validation for macromolecular crystallography [J].
Chen, Vincent B. ;
Arendall, W. Bryan, III ;
Headd, Jeffrey J. ;
Keedy, Daniel A. ;
Immormino, Robert M. ;
Kapral, Gary J. ;
Murray, Laura W. ;
Richardson, Jane S. ;
Richardson, David C. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :12-21
[10]   Expanding and reprogramming the genetic code [J].
Chin, Jason W. .
NATURE, 2017, 550 (7674) :53-60