A WEIGHTED COMPACTNESS CRITERION FOR COMMUTATORS ASSOCIATED WITH GENERALIZED CALDERON-ZYGMUND OPERATORS

被引:0
作者
Yang, Li [1 ]
He, Qianjun [2 ]
Li, Pengtao [1 ]
Zhao, Kai [1 ]
机构
[1] Qingdao Univ, Sch Math & Stat, Qingdao, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
compactness; weight function; commutator; INEQUALITIES;
D O I
10.1216/jie.2023.35.235
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T be a bounded operator on L-p( R-n). Under the assumption that the kernel of T satisfies some Hormander-type estimates, we obtain a boundedness criterion for the multilinear commutators T-(b) over right arrow on the weighted Lebesgue spaces L-p(omega) with (b) over right arrow is an element of BMO(R-n) and omega belonging to the Muckenhoupt weight class A(p/ m'). Further, for (b) over right arrow is an element of CMO(R-n), the vanishing mean oscillation space, a criterion of L-p-weighted compactness of T-(b) over right arrow is established. As applications, the weighted L-p-boundedness and L-p-compactness criteria can be applied to the theta-type Calderon-Zygmund operator and its commutators.
引用
收藏
页码:235 / 257
页数:23
相关论文
共 20 条
[1]  
ANDERSEN KF, 1980, STUD MATH, V69, P19
[2]  
[Anonymous], 2005, Acta Math. Appl. Sin. Engl. Ser.
[3]  
COIFMAN R R, 1978, DELA OPERATEURS PSEU, P57
[4]  
Grafakos L, 2014, GRAD TEXTS MATH, V250, DOI 10.1007/978-1-4939-1230-8
[5]  
Grafakos L, 2008, GRAD TEXTS MATH, V249, P1, DOI 10.1007/978-0-387-09432-8_1
[6]   FACTORIZATION OF AP WEIGHTS [J].
JONES, PW .
ANNALS OF MATHEMATICS, 1980, 111 (03) :511-530
[7]   WEIGHTED NORM INEQUALITIES FOR SINGULAR INTEGRALS [J].
KANEKO, M ;
YANO, S .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1975, 27 (04) :570-588
[8]  
Ky LD., 2011, ANAL THEORY APPL, V27, P251, DOI DOI 10.1007/S10496-011-0251-Z
[9]  
Li PT, 2012, PURE APPL MATH Q, V8, P713
[10]  
Liu Z., 2002, Kodai Math. J., V25, P79, DOI 10.2996/kmj/1106171078